|
REFERENCES [1]Slotine, J.J.E. and Li, W.: ‘Applied Nonlinear Control’, (Prentice-Hall, 1991) [2]Khalil, H.K.: ‘Nonlinear Systems’, (Prentice-Hall, 2001) [3]Ioannou, P. and Sun, J.: ‘Robust Adaptive Control’, (Prentice Hall, 1996) [4]Brown, M. and Harris, C.: “Neurofuzzy Adaptive Modeling and Control”, (Prentice-Hall, 1994) [5]Lin, C.T. and George Lee, C.S.: “Neural Fuzzy Systems: a Neuro-Fuzzy Synergism to Intelligent Systems”,(Prentice-Hall, 1996) [6]Fu, K.S.: “Learning Control Systems and Intelligent Control Systems: an Intersection of Artificial Intelligence and Automatic Control”, IEEE Trans. Automatic Control, 1971, 16, pp. 70-72 [7]White, D.A. and Sofge, D.A.: ‘Handbook of Intelligent Control’, (Van Nostrand Reinhold, 1992) [8]Haykin, S.: ‘Neural Networks: A Comprehensive Foundation’, ( Macmillan, 1994) [9]Davis, L.: ‘Handbook of Genetic Algorithms’, (Van Nostrand Reinhold, 1991) [10]Leu, Y.G., Wang, W.Y. and Lee, T.T.: “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems”, IEEE Trans. Robotics and Automation, 1999, 15, (5), pp. 805-817 [11]Lazzerini, B., Reyneri, L.M. and Chiaberge, M.: “A Neuro-Fuzzy Approach to Hybrid Intelligent Control”, IEEE Trans. Industry Applications, 1999, 35, (2), pp. 413-425 [12]Wang, C.H., Lin, T.C., Lee, T.T. and Liu, H.L.: “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems”, IEEE Trans. Systems, Man and Cybernetics, Part B, 2002, 32, (5), pp. 583-597 [13] Peng, L. and Woo, P.Y.: “Neural-Fuzzy Control System for Robotic Manipulators”, IEEE Control Systems Magazine, 2002, 22, (1), pp. 53-63 [14] Lewis, F.L., Yesildirek, A. and Liu, K.: “Multilayer Neural-Net Robot Controller with Guaranteed Tracking Performance”, IEEE Trans. Neural Networks, 1996, 7, (2), pp. 388-399 [15] Zhihong, M., Wu, H.R. and Palaniswami, M.: “An Adaptive Tracking Controller Using Neural Networks for a Class of Nonlinear Systems”, IEEE Trans. Neural Networks, 1998, 9, pp. 947-955 [16]Lin, C.M. and Hsu, C.F.: “Recurrent-Neural-Network-Based Adaptive-Backstepping Control for Induction Servomotors”, IEEE Trans. Industrial Electronics, 2005, 52, (6), pp. 1677-1684 [17]Yeh, M.F. and Chang, K.C.: “A Self-Organizing CMAC Network With Gray Credit Assignment”, IEEE Trans. Systems, Man and Cybernetics, Part B, 2006, 36, (3), pp. 623-635 [18] Wang, L.X.: ‘A Course in Fuzzy Systems and Control’ ,(Prentice-Hall, 1997) [19] Takagi, T., and Sugeno, M.: “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Trans. Systems, Man and Cybernetics, 1985, 15, (1), pp. 116-132 [20] Berstecher, R.G., Palm R. and Unbehauen, H.D.: “An Adaptive Fuzzy Sliding-Mode Controller”, IEEE Trans. Industrial Electronics, 2001, 48, (1), pp. 18-31 [21] Tao, C.W.: “Adaptive Fuzzy PIMD Controller for Systems with Uncertain Deadzones”, IEEE Trans. System, Man and Cybernetics, Part A, 2002, 32, (5), pp. 614-620 [22]Takagi, T. and Sugeno, M.: “Fuzzy Identification of Systems and Its Application to Modeling and Control”, IEEE Trans. Systems, Man, and Cybernetics, 1985, 15, pp. 116-132 [23]Van der Wal, A.J.: “Application of Fuzzy Control in Industry”, Fuzzy Sets and Systems, 1995, 74, pp. 33-44 [24]Wang, L.X.: ‘Adaptive Fuzzy Systems and Control’, ( Prentice-Hall, 1994) [25]Lee, C.C., “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I, Part II”, IEEE Trans. Systems, Man, and Cybernetics, 1990, 20, pp. 404-435 [26]Wong, C.C. and Chen, J.Y.: “Fuzzy Control of Nonlinear Systems via Rule Adjust-ment,” IEE Proc.- Control Theory and Applications, 1999, 146, (6), pp. 578-584 [27]Albus, J.S.: “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. Dyn. Syst. Meas. Contr., 1975, 97, pp. 220-227 [28]Albus, J.S.: “Data Storage in the Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. Dyn. Syst. Meas. Contr., 1975, 97, pp. 228-233 [29]Hwang, K.S. and Lin, C.S.: “Smooth Trajectory Tracking of Three-Link Robot: a self-organizing CMAC approach”, IEEE Trans. Systems, Man, and Cybernetics, 1998, 28, (5), pp. 680-692 [30]Kwan, C.M., Lewis, F.L., Haynes, L and Pryor, J.D.: “Robust Spacecraft Attitude Control Using Fuzzy CMAC”, Proc. IEEE Int Conf. on Intelligent Control, 1996, pp. 43-48 [31]Lin, C.M., Peng, Y.F. and Hsu, C.F.: “Robust Cerebellar Model Articulation Controller Design for Unknown Nonlinear Systems”, IEEE Trans. Circuits and Systems, 2004, 51, (7), pp. 354-358 [32]Kim, Y.H. and Lewis, F.L.: “Optimal Design of CMAC Neural-Network Controller for Robot Manipulators”, IEEE Trans. System, Man and Cybernetics, Part C, 2000, 30, (1), pp. 22-31 [33]Chen, J.Y., Tsai, P.S., and Wong, C.C.: “Adaptive Design of a Fuzzy Cerebellar Model Arithmetic Controller Neural Network”, IEE Proc.-Control Theory and Applications, 2005, 152, (2), pp. 133-137 [34]Wu, T.F., Tsai, P.S. and Chang, F.R.: “Robust Adaptive Fuzzy CMAC Control for Unknown Systems”, Proceeding of the 16th IFAC World Congress, Prague ,Czech Republic ,2005. [35]Su, S.F., Lee, Z.J., Lee, T.T. and Wang, Y.P.: “Robust and Fast Learning for Fuzzy Cerebellar Model Articulation Controllers”, IEEE Trans. Systems, Man and Cybernetics, Part B, 2006, 36, (1), pp. 203-208 [36]Lin, C.M. and Peng, Y.F.: “Missile Guidance Law Design Using Adaptive Cerebellar Model Articulation Controller”, IEEE Trans. Neural Networks, 2005, 16, (3), pp. 636-644 [37]Wai, R.J., Lin, C.M. and Peng, Y.F.: “Robust CMAC Neural Network Control for LLCC Resonant Driving Linear Piezoelectric Ceramic Motor”, IEE Proc.-Control Theory and Applications, 2003, 150, (3), pp. 221-232 [38]Lin, C.M. and Peng, Y.F.: “Adaptive CMAC-Based Supervisory Control for Uncertain Nonlinear Systems”, IEEE Trans. Systems, Man, and Cybernetics, 2004, 34, (2), pp. 1248-1260 [39]Wu, T.F., Tsai, P.S. and Chang, F.R.: “Adaptive Fuzzy CMAC Control for a Class of Nonlinear Systems with Smooth Compensation”, IEE Proc.-Control Theory and Applications, 2006, Accepted [40]Chen, B.S., Lee, C.H. and Chang, Y.C.: “Hinf Tracking Design of Uncertain Nonlinear SISO System: Adaptive Fuzzy Approach”, IEEE Trans. Fuzzy Systems, 1996, 4, (1), pp. 32-43 [41]Ioannou, P.A. and Kokotovic, P.V.: “Instability Analysis and Improvement Robustness of Adaptive Control”, Automatica, 1984, 20, (5), pp. 583-594 [42]Papadopoulos, E.G., Chasparis, G.C.: “Analysis and Model-Based Control of Servomechanisms with Friction”, Proc. IEEE Int Conf. on Intelligent Robots and System (RSJ), 2002, pp. 2109-2114 [43]Jiang, Z.P.: “Advanced Feedback Control of the Chaotic Duffing Equation”, IEEE Trans. Circuits Systems I, 2002, 49, pp. 244-249 [44]Lin, W.S. and Chen, C.S.: “Robust Adaptive Sliding Mode Control Using Fuzzy Modelling for a Class of Uncertain MIMO Nonlinear Systems”, IEE Proc.-Control Theory and Applications, 2002, 149, (3), pp. 193-201 [45]Tsai, P.S., Wang, L.S. and Chang, F.R.: “Modeling and Hierarchical Tracking Control of Tricycle Mobile Robots”, IEEE Trans. Robots, 2006, Accepted [46]Saridis, G.N. and Valavanis, K.P.: “Analytical Design of Intelligent Machines”, Automatica, 1988, 24, (2), pp. 123-133 [47]Wang, L.S. and Pao, Y.H.: “Jourdain’s Variational Equation and Appell’s Equation of Motion for Nonholonomic Dynamical Systems”, American Journal of Physics, 2003, 71, (1), pp. 72-82 [48]Chiang, C.T. and Lin, C.S.: “CMAC with General Basis Functions”, Neural Networks, 1996, 9, pp. 1199–1211 [49]Lane, S.H., Handelman, D.A. and Gelfand, J.J.: “Theory and Development of Higher-Order CMAC Neural Networks”, IEEE Contr. Syst. Mag., 1992, 12, pp. 23–30 [50]Jagannathan, S.: “Discrete-Time CMAC NN Control of Feedback Linearizable Nonlinear Systems under a Persistence of Excitation”, IEEE Trans. Neural Networks, 1999, 10, pp. 128–137
|