跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳德豐
研究生(外文):Ter-Feng Wu
論文名稱:非線性系統之適應性模糊小腦模式控制
論文名稱(外文):Adaptive Fuzzy CMAC Control for a Class of Nonlinear Systems
指導教授:張帆人
指導教授(外文):Fan-Ren Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:102
中文關鍵詞:適應控制模糊控制小腦模式控制智慧型控制非線性系統
外文關鍵詞:Adaptive ControlFuzzy ControlCerebellar Model Articulation Controller (CMAC)Intelligent ControlNonlinear Systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文提出一個改良型多變數適應性模糊小腦模式(CMAC)控制系統,以解決一類非線性系統的追蹤控制問題。 首先,整合模糊邏輯和小腦模式演算,建構一個可降低輸入維度,簡化系統結構的多變數模糊小腦模式單元(FCMAC),用於逼近具不確定性的非線性多變數系統模式,以產生理想的多變數控制輸入。 其次,針對一類單變數(SISO)的非線性系統,應用上述的模糊小腦模式單元,設計適當的適應律及控制律並結合具滑動面特性的輸出回授,發展成一單變數(MISO)適應性模糊小腦模式控制系統,以調適非線性系統的不確定性,進行線上參數自動調整,免於耗時的先備性離線學習。 此外,為了降低模糊小腦模式單元的逼近誤差,以增加系統的控制精度及確保閉回路系統的穩定,遂引入一傳統的切換式強健補償器,初期完成一閉回路漸進穩定之適應性模糊小腦模式控制系統。 後來為了改善因不連續的切換補償作用所衍生控制信號之顫動現象,進而提出一平滑式強健補償器來替代原有切換補償器,完成一改良型單變數(MISO)適應性模糊小腦模式控制系統。

最後,拓展上述所有單變數(MISO)的理論和應用,完成一改良型多變數(MIMO)適應性模糊小腦模式控制系統,作為本文之主要結果之一。 藉由完備的李雅普諾夫穩定度分析,證明所有閉回路信號是有界的,且追蹤誤差至少可指數收斂至一殘局,其大小可藉由調整參數任意控制。雖然追蹤精度略為降低,但控制信號的品質卻可大大提升。 經由多個應用問題的模擬結果,驗證了本文所提方法的正確性及可行性。
ABSTRACT

In this thesis, a modified multivariable adaptive fuzzy cerebellar model articulation controller (CMAC) control scheme is proposed to solve the tracking problem for a class of nonlinear systems. Firstly, a fuzzy CMAC (FCMAC) that merges fuzzy logic and CMAC algorithm such that the input space dimension and the complicated structure in CMAC can be simplified. The FCMAC module is used to approximate a nonlinear multivariable (multi-input multi-output (MIMO)) system involving uncertainty to create the desired ideal control inputs. Next, suitable control and adaptive laws with output feedback based on sliding surface concept are incorporated with FCMAC into a multi-input single-output (MISO) adaptive FCMAC (AFCMAC) control system, to tune all of the control gains on-line, thereby accommodating the uncertainty of nonlinear systems without prior off-line learning phase. Particularly, to reduce the approximation error, improve the tracking accuracy, and guarantee the closed-loop stability, the conventional switching robust compensation is adopted. Furthermore, to overcome the chattering problem associated with discontinuity derived from switching action, a smooth compensation is then proposed, completing the modified MISO AFCMAC control scheme.

Eventually, the theories and applications concerning the modified MISO AFCMAC control scheme is further to extend successfully to the modified MIMO AFCMAC control scheme as the main results of this work. By integrated Lyapunov stability analysis, it is guaranteed that all of the closed-loop signals are bounded, and the tracking errors converge exponentially to a residual set, whose size can be adjusted by changing the design parameters. On the whole, although the tracking precision is reduced slightly, the control signal’s quality can be improved greatly. Finally, simulation results for its applications to several examples are presented to demonstrate the validity and applicability of the methodologies proposed in this thesis.
TABLE OF CONTENTS

ACKNOWLEDGMENT (Chinese)..................................................................................................................................... I
ABSTRACT (Chinese).............................................................................................................................................................. II
ABSTRACT (English)............................................................................................................................................................... III
TABLE OF CONTENTS............................................................................................................................................................. IV
LIST OF FIGURES........................................................................................................................................................................ VII
LIST OF TABLES......................................................................................................................................................................... X
LIST OF NOTATIONS.............................................................................................................................................................. XIV

CHAPTER 1
INTRODUCTION…….....…………………................................................................................................................................... 1
1.1 Motivation and Related Researches………………………………….…………………….…..……….….. 1
1.2 Thesis Contributions ……………………………………….………………………………………….……..…… 4
1.3 Thesis Organization ……………………………………….…………………………………………….………… 5

CHAPTER 2
FUZZY CMAC DESIGN………………………………………………………………………..………………………….. 9
2.1 Basic CMAC Design…………………………………………………………………………………………..…… 10
2.2 Fuzzy CMAC Design……………………………………………………………………………………….…....… 14
2.3 Concluding Remarks…………………………………………………………………………………....………..… 16

CHAPTER 3
ADAPTIVE FUZZY CMAC CONTROLLER DESIGN………………………………………………………… 18
3.1 Problem Description……………………………………………………………………………………………… 19
3.2 AFCMAC Design…………………………………………………………………………………………..……… 20
3.3 AFCMAC with Switching Compensation (AFCMAC)……………………….………………… 24
3.4 AFCMAC with Smooth Compensation (Modified AFCMAC)……………………………... 27
3.5 Applications of AFCMAC………………………………………………………………………………..…… 33
3.5.1 Example 1: Inverted Pendulum with Friction………………………………………………… 33
3.5.2 Example 2: One-Link Rigid Robotic Manipulator………………………………………… 44
3.5.3 Example 3: Duffing forced-oscillation system………………………………………….…… 47
3.5.4 Example 4: Third-order Nonlinear System………………………………………………….… 49
3.6 Concluding Remarks………………………………………………………………………………………..…… 53

CHAPTER 4
MULTIVARIABLE ADAPTIVE FUZZY CMAC CONTROLLER DESIGN……………………..…..… 54
4.1 Problem Description…………………………………………………………………………………………....… 55
4.2 Multivariable AFCMAC Design……………………………………………………………………….…… 57
4.3 Multivariable AFCMAC with Switching Compensation (MIMO AFCMAC)…….… 62
4.4 Multivariable AFCMAC with Smooth Compensation (Modified MIMO AFCMAC)……………………………………………………………………………………………………………… 65
4.5 Applications of the Modified MIMO AFCMAC…………………………………………………… 72
4.5.1 Example 1: Multivariable Affined Squared Nonlinear Systems…………….……… 72
4.5.2 Example 2: Tracking Control for a Tri-wheeled Mobile Robot……………..…….… 84
4.6 Concluding Remarks…………………………………………………………………………………….…..…… 94
CHAPTER 5
CONCLUSIONS AND FUTURE WORKS……………………………………………………..……………………… 95
5.1 Concluding Remarks………………………………………………………………………………………......… 95
5.2 Suggestions for Future Research…………………………………………………………………………… 97
REFERENCES……………………………………………………………………………………..………………..…….…… 99

LIST OF FIGURES

Fig. 1.1 Skeleton diagram of the modified MIMO AFCMAC control scheme.………. 3

Fig. 2.1 Schematic diagram of fuzzy sets integrated with CMAC.…….....………………... 11
Fig. 2.2 Sketch of CMAC integrated with fuzzy sets. ………………………………………….... 14

Fig. 3.1 Architecture of the AFCMAC control schemes.…….....……..………………………. 25
Fig. 3.2 Diagram of the inverted pendulum.…….....…………………………………………….…… 33
Fig. 3.3(a) Tracking response of Case 1 in Example 1.…….....………………….………………… 36
Fig. 3.3(b) Tracking error of Case 1 in Example 1.…….....……………….…………….…………… 37
Fig. 3.3(c) Control input of Case 1 in Example 1.…….....……………………………..……..……… 37
Fig. 3.3(d) Tracking error of Case 2 in Example 1.……………………….……………......………… 38
Fig. 3.3(e) Control input of Case 2 in Example 1.…………………………………………..………… 38
Fig. 3.3(f) Updated CMAC weights of Case 2 in Example 1.…….....……………………..…… 39
Fig. 3.3(g) Updated approximation error bound of Case 2 in Example 1.……......………. 39
Fig. 3.3(h) Tracking error of Case 3 in Example 1.…….....………………………………………..… 40
Fig. 3.4(a) Tracking error of Case 4 in Example 1.…….......................................................………… 41
Fig. 3.4(b) Control input (u) of Case 4 in Example 1.…….....………………………………….…… 41
Fig. 3.4(c) Control input (uAFCMAC) of Case 4 in Example 1.……................................…….…… 42
Fig. 3.4(d) Control input (uAR) of Case 4 in Example 1.……..........................................….….…… 42
Fig. 3.4(e) Tracking error of Case 4 in Example 1.…….....………………….……………….….…… 43
Fig. 3.4(f) Control input (u) of Case 4 in Example 1.…….....………………………….……….…… 43
Fig. 3.5(a) Tracking response of Example 2.……......................................................................….……… 45
Fig. 3.5(b) Tracking error of Example 2.…….....……………………………………………………..….… 46
Fig. 3.5(c) Control input of Example 2.…….....………………………………………………………..…… 46
Fig. 3.6(a) Tracking response of Example 3.……..................................................................…….……… 48
Fig. 3.6(b) Tracking error of Example 3.…….....…………………………………………….…………….. 48
Fig. 3.6(c) Control input of Example 3.……...................................................................................………… 49
Fig. 3.7(a) Tracking response of Example 4.…….....………………………………………………..…… 51
Fig. 3.7(b) Tracking error of Example 4.…….....………………………………………………………...… 51
Fig. 3.7(c) Control input of Example 4.…….......................................................................................……… 52
Fig. 3.7(d) Tracking error of Example.............................................................................................................. 52

Fig. 4.1 Architecture of the MIMO AFCMAC control schemes............................................. 63
Fig. 4.2 Illustration of residual set region (for n=2).......................................................................... 72
Fig. 4.3(a) Tracking responses of Case 1 in Example 1....................................................................... 76
Fig. 4.3(b) Tracking errors of Case 1 in Example 1................................................................................ 76
Fig. 4.3(c) Control inputs of Case 1 in Example 1................................................................................... 77
Fig. 4.3(d) Updated approximation error bounds of Case 1 in Example 1............................ 77
Fig. 4.3(e) Update CMAC weights ( ) of Case 1 in Example 1.............................................. 78
Fig. 4.3(f) Update CMAC weights ( ) of Case 1 in Example 1.............................................. 78
Fig. 4.3(g) Update CMAC weights ( ) of Case 1 in Example 1............................................. 79
Fig. 4.4(a) Tracking responses of Case 2 in Example 1...................................................................... 79
Fig. 4.4(b) Tracking errors of Case 2 in Example 1............................................................................... 80
Fig. 4.4(c) Control inputs of Case 2 in Example 1.................................................................................. 80
Fig. 4.4(d) Updated approximation error bound of Case 2 in Example 1.............................. 81
Fig. 4.5(a) Tracking responses of Case 3 in Example 1...................................................................... 81
Fig. 4.5(b) Tracking errors of Case 3 in Example 1............................................................................... 82
Fig. 4.5(c) Control inputs of Case 3 in Example 1................................................................................... 82
Fig. 4.5(d) Updated approximation error bounds of Case 3 in Example 1............................ 83
Fig. 4.5(e) Convergence on Case 3 in Example 1..................................................................................... 83
Fig. 4.6 A three-wheeled mobile robot........................................................................................................ 84
Fig. 4.7 The configuration of the mobile robot..................................................................................... 84
Fig. 4.8 Block diagram of trajectory tracking control design.................................................... 86
Fig. 4.9(a) Tracking responses of Case 1 in Example 2...................................................................... 88
Fig. 4.9(b) Tracking trajectory of Case 1 in Example 2...................................................................... 89
Fig. 4.9(c) Tracking errors of Case 1 in Example 2................................................................................ 89
Fig. 4.9(d) Control inputs (ui) of Case 1 in Example 2........................................................................ 90
Fig. 4.9(e) Control inputs ( ) of Case 1 in Example 2........................................................................ 90
Fig. 4.9(f) Updated approximation error bounds of Case 1 in Example 2............................. 91
Fig. 4.9(g) Control inputs (ui) of Case 2 in Example 2........................................................................ 91
Fig. 4.9(h) Tracking errors of Case 2 in Example 2............................................................................... 92
Fig. 4.9(i) Control inputs of Case 2 in Example 2................................................................................... 92
Fig. 4.9(j) Updated approximation error bound of Case 3 in Example 2............................... 93


LIST OF TABLES

Table 2.1 Relationship between fuzzy rules and CMAC.................................................................. 66
REFERENCES
[1]Slotine, J.J.E. and Li, W.: ‘Applied Nonlinear Control’, (Prentice-Hall, 1991)
[2]Khalil, H.K.: ‘Nonlinear Systems’, (Prentice-Hall, 2001)
[3]Ioannou, P. and Sun, J.: ‘Robust Adaptive Control’, (Prentice Hall, 1996)
[4]Brown, M. and Harris, C.: “Neurofuzzy Adaptive Modeling and Control”, (Prentice-Hall, 1994)
[5]Lin, C.T. and George Lee, C.S.: “Neural Fuzzy Systems: a Neuro-Fuzzy Synergism to Intelligent Systems”,(Prentice-Hall, 1996)
[6]Fu, K.S.: “Learning Control Systems and Intelligent Control Systems: an Intersection of Artificial Intelligence and Automatic Control”, IEEE Trans. Automatic Control, 1971, 16, pp. 70-72
[7]White, D.A. and Sofge, D.A.: ‘Handbook of Intelligent Control’, (Van Nostrand Reinhold, 1992)
[8]Haykin, S.: ‘Neural Networks: A Comprehensive Foundation’, ( Macmillan, 1994)
[9]Davis, L.: ‘Handbook of Genetic Algorithms’, (Van Nostrand Reinhold, 1991)
[10]Leu, Y.G., Wang, W.Y. and Lee, T.T.: “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems”, IEEE Trans. Robotics and Automation, 1999, 15, (5), pp. 805-817
[11]Lazzerini, B., Reyneri, L.M. and Chiaberge, M.: “A Neuro-Fuzzy Approach to Hybrid Intelligent Control”, IEEE Trans. Industry Applications, 1999, 35, (2), pp. 413-425
[12]Wang, C.H., Lin, T.C., Lee, T.T. and Liu, H.L.: “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems”, IEEE Trans. Systems, Man and Cybernetics, Part B, 2002, 32, (5), pp. 583-597
[13] Peng, L. and Woo, P.Y.: “Neural-Fuzzy Control System for Robotic Manipulators”, IEEE Control Systems Magazine, 2002, 22, (1), pp. 53-63
[14] Lewis, F.L., Yesildirek, A. and Liu, K.: “Multilayer Neural-Net Robot Controller with Guaranteed Tracking Performance”, IEEE Trans. Neural Networks, 1996, 7, (2), pp. 388-399
[15] Zhihong, M., Wu, H.R. and Palaniswami, M.: “An Adaptive Tracking Controller Using Neural Networks for a Class of Nonlinear Systems”, IEEE Trans. Neural Networks, 1998, 9, pp. 947-955
[16]Lin, C.M. and Hsu, C.F.: “Recurrent-Neural-Network-Based Adaptive-Backstepping Control for Induction Servomotors”, IEEE Trans. Industrial Electronics, 2005, 52, (6), pp. 1677-1684
[17]Yeh, M.F. and Chang, K.C.: “A Self-Organizing CMAC Network With Gray Credit Assignment”, IEEE Trans. Systems, Man and Cybernetics, Part B, 2006, 36, (3), pp. 623-635
[18] Wang, L.X.: ‘A Course in Fuzzy Systems and Control’ ,(Prentice-Hall, 1997)
[19] Takagi, T., and Sugeno, M.: “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Trans. Systems, Man and Cybernetics, 1985, 15, (1), pp. 116-132
[20] Berstecher, R.G., Palm R. and Unbehauen, H.D.: “An Adaptive Fuzzy Sliding-Mode Controller”, IEEE Trans. Industrial Electronics, 2001, 48, (1), pp. 18-31
[21] Tao, C.W.: “Adaptive Fuzzy PIMD Controller for Systems with Uncertain Deadzones”, IEEE Trans. System, Man and Cybernetics, Part A, 2002, 32, (5), pp. 614-620
[22]Takagi, T. and Sugeno, M.: “Fuzzy Identification of Systems and Its Application to Modeling and Control”, IEEE Trans. Systems, Man, and Cybernetics, 1985, 15, pp. 116-132
[23]Van der Wal, A.J.: “Application of Fuzzy Control in Industry”, Fuzzy Sets and Systems, 1995, 74, pp. 33-44
[24]Wang, L.X.: ‘Adaptive Fuzzy Systems and Control’, ( Prentice-Hall, 1994)
[25]Lee, C.C., “Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I, Part II”, IEEE Trans. Systems, Man, and Cybernetics, 1990, 20, pp. 404-435
[26]Wong, C.C. and Chen, J.Y.: “Fuzzy Control of Nonlinear Systems via Rule Adjust-ment,” IEE Proc.- Control Theory and Applications, 1999, 146, (6), pp. 578-584
[27]Albus, J.S.: “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. Dyn. Syst. Meas. Contr., 1975, 97, pp. 220-227
[28]Albus, J.S.: “Data Storage in the Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. Dyn. Syst. Meas. Contr., 1975, 97, pp. 228-233
[29]Hwang, K.S. and Lin, C.S.: “Smooth Trajectory Tracking of Three-Link Robot: a self-organizing CMAC approach”, IEEE Trans. Systems, Man, and Cybernetics, 1998, 28, (5), pp. 680-692
[30]Kwan, C.M., Lewis, F.L., Haynes, L and Pryor, J.D.: “Robust Spacecraft Attitude Control Using Fuzzy CMAC”, Proc. IEEE Int Conf. on Intelligent Control, 1996, pp. 43-48
[31]Lin, C.M., Peng, Y.F. and Hsu, C.F.: “Robust Cerebellar Model Articulation Controller Design for Unknown Nonlinear Systems”, IEEE Trans. Circuits and Systems, 2004, 51, (7), pp. 354-358
[32]Kim, Y.H. and Lewis, F.L.: “Optimal Design of CMAC Neural-Network Controller for Robot Manipulators”, IEEE Trans. System, Man and Cybernetics, Part C, 2000, 30, (1), pp. 22-31
[33]Chen, J.Y., Tsai, P.S., and Wong, C.C.: “Adaptive Design of a Fuzzy Cerebellar Model Arithmetic Controller Neural Network”, IEE Proc.-Control Theory and Applications, 2005, 152, (2), pp. 133-137
[34]Wu, T.F., Tsai, P.S. and Chang, F.R.: “Robust Adaptive Fuzzy CMAC Control for Unknown Systems”, Proceeding of the 16th IFAC World Congress, Prague ,Czech Republic ,2005.
[35]Su, S.F., Lee, Z.J., Lee, T.T. and Wang, Y.P.: “Robust and Fast Learning for Fuzzy Cerebellar Model Articulation Controllers”, IEEE Trans. Systems, Man and Cybernetics, Part B, 2006, 36, (1), pp. 203-208
[36]Lin, C.M. and Peng, Y.F.: “Missile Guidance Law Design Using Adaptive Cerebellar Model Articulation Controller”, IEEE Trans. Neural Networks, 2005, 16, (3), pp. 636-644
[37]Wai, R.J., Lin, C.M. and Peng, Y.F.: “Robust CMAC Neural Network Control for LLCC Resonant Driving Linear Piezoelectric Ceramic Motor”, IEE Proc.-Control Theory and Applications, 2003, 150, (3), pp. 221-232
[38]Lin, C.M. and Peng, Y.F.: “Adaptive CMAC-Based Supervisory Control for Uncertain Nonlinear Systems”, IEEE Trans. Systems, Man, and Cybernetics, 2004, 34, (2), pp. 1248-1260
[39]Wu, T.F., Tsai, P.S. and Chang, F.R.: “Adaptive Fuzzy CMAC Control for a Class of Nonlinear Systems with Smooth Compensation”, IEE Proc.-Control Theory and Applications, 2006, Accepted
[40]Chen, B.S., Lee, C.H. and Chang, Y.C.: “Hinf Tracking Design of Uncertain Nonlinear SISO System: Adaptive Fuzzy Approach”, IEEE Trans. Fuzzy Systems, 1996, 4, (1), pp. 32-43
[41]Ioannou, P.A. and Kokotovic, P.V.: “Instability Analysis and Improvement Robustness of Adaptive Control”, Automatica, 1984, 20, (5), pp. 583-594
[42]Papadopoulos, E.G., Chasparis, G.C.: “Analysis and Model-Based Control of Servomechanisms with Friction”, Proc. IEEE Int Conf. on Intelligent Robots and System (RSJ), 2002, pp. 2109-2114
[43]Jiang, Z.P.: “Advanced Feedback Control of the Chaotic Duffing Equation”, IEEE Trans. Circuits Systems I, 2002, 49, pp. 244-249
[44]Lin, W.S. and Chen, C.S.: “Robust Adaptive Sliding Mode Control Using Fuzzy Modelling for a Class of Uncertain MIMO Nonlinear Systems”, IEE Proc.-Control Theory and Applications, 2002, 149, (3), pp. 193-201
[45]Tsai, P.S., Wang, L.S. and Chang, F.R.: “Modeling and Hierarchical Tracking Control of Tricycle Mobile Robots”, IEEE Trans. Robots, 2006, Accepted
[46]Saridis, G.N. and Valavanis, K.P.: “Analytical Design of Intelligent Machines”, Automatica, 1988, 24, (2), pp. 123-133
[47]Wang, L.S. and Pao, Y.H.: “Jourdain’s Variational Equation and Appell’s Equation of Motion for Nonholonomic Dynamical Systems”, American Journal of Physics, 2003, 71, (1), pp. 72-82
[48]Chiang, C.T. and Lin, C.S.: “CMAC with General Basis Functions”, Neural Networks, 1996, 9, pp. 1199–1211
[49]Lane, S.H., Handelman, D.A. and Gelfand, J.J.: “Theory and Development of Higher-Order CMAC Neural Networks”, IEEE Contr. Syst. Mag., 1992, 12, pp. 23–30
[50]Jagannathan, S.: “Discrete-Time CMAC NN Control of Feedback Linearizable Nonlinear Systems under a Persistence of Excitation”, IEEE Trans. Neural Networks, 1999, 10, pp. 128–137
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top