跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林孟滸
研究生(外文):Meng-Hu Lin
論文名稱:以光學讀取頭系統實現之輕敲式原子力顯微鏡
論文名稱(外文):A Tapping-Mode Atomic Force Microscope Utilizing Optical Pickup System
指導教授:傅立成傅立成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:89
中文關鍵詞:輕敲式原子力顯微鏡光學讀取頭系統可變結構控制器
外文關鍵詞:Tapping-mode atomic force microscopyOptical pickup headVariable structure controller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究之目的是設計並實現一輕敲式原子力顯微鏡 (tapping-mode atomic force microscope),其中使用光學讀取頭作為探針在垂直方向上的位移量測系統。此光學讀取頭系統取代傳統光槓桿原理所需的複雜光路系統。此外,使用一個由壓電致動器 (piezo-actuator) 所構成的慣性馬達 (inertial motor) 作為待測樣品的載送趨近系統,同時作為垂直方向的掃描致動器。如此整體系統的硬體架構得以最小化,以避免因熱漲冷縮所引起的量測誤差。
為了實現進階控制器設計,本論文提出一整合探針-樣品作用關係與壓電致動器之輕敲式原子力顯微鏡數學模型。由於探針的振幅是唯一可得的資訊,我們使用迴路傳輸回復 (loop transfer recovery, LTR) 狀態觀察器來估測狀態資訊,並設計以此觀察器為基礎的可變結構控制器 (variable structure controller) 以增進系統的掃描性能與強健性。實驗結果顯示,本論文所設計之輕敲式原子力顯微鏡可以達到垂直方向正負5奈米之掃描精確度,以及每秒4條線之掃描速度。
A compact tapping-mode atomic force microscope (AFM) utilizing an optical pickup system for measuring the deflection of the probe is presented. An optical pickup head of commercial digital versatile disc read only memory (DVD-ROM) drive is applied in the measuring system. This DVD pickup replaces the quadrant photodiode and complex light path system of traditional optical-lever technique. In addition, an inertial motor composed by a piezo-actuator is used as the sample approaching mechanism and the scanner in the vertical direction. Thus, the volume of hardware structure is decreased, and the sensing variance due to temperature change will be minimized.
In order to perform advanced controller design, we propose an integrated system model including the tip-sample interaction and dynamics of the piezo-actuator for the tapping-mode AFM. Because the amplitude of the oscillating probe is the only available information, we use a loop transfer recovery (LTR) observer to estimate system states. Then, the observed-based variable structure controller is designed for enhancing system robustness and performance. From the provided experiment results, satisfactory performances of the proposed AFM system have been successfully demonstrated. The vertical scanning resolution is ±5nm and scanning speed is 4 lines per second.
摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VIII
Chapter 1 Introduction 1
1.1 Motivation and Goal 1
1.2 Survey on AFM Systems 2
1.2.1 Operation Mode 3
1.2.2 Actuating System 6
1.2.3 Measuring System 7
1.3 Contribution 9
1.4 Thesis Organization 10
Chapter 2 Preliminaries 11
2.1 Basic Theories of Interaction Forces 11
2.1.1 Van der Waals Interaction Principle 11
2.1.2 Dejarguin-Muller-Toporov Theory 18
2.2 Properties of Piezoelectric Materials 19
2.2.1 Hysteresis Phenomenon 19
2.2.2 Creep Phenomenon 24
2.3 Operating Principle of DVD Pickup System 25
2.3.1 Sensing Methodology 26
2.3.2 Focusing and Tracking Actuators 27
Chapter 3 System Design 29
3.1 Design Concepts 29
3.1.1 High Scanning Accuracy 30
3.1.2 High Scanning Speed 30
3.1.3 Compact Structure 31
3.1.4 Cost Effectiveness 31
3.2 Measuring System 32
3.2.1 Probe 33
3.2.2 DVD Pickup System 34
3.3 Sample Approaching Mechanism 35
3.3.1 Inertial Sliding Mechanism 35
3.3.2 Inertial Motor 37
3.4 Scanner Design 38
3.4.1 Moving Sample Type 38
3.5 Integrated AFM System 39
Chapter 4 Modeling and System Identification 41
4.1 Dynamics 41
4.1.1 Tip-Sample Interaction 41
4.1.2 Dynamics of Stacked Piezo-actuator 49
4.2 System Identification 52
Chapter 5 Controller Design 55
5.1 LTR Observer Design 56
5.1.1 Observer Formulation 57
5.1.2 Stability Analysis 58
5.2 Observed-Based Variable Structure Controller Design 60
5.2.1 Stability Analysis 61
5.3 Numerical Simulation 65
Chapter 6 Experiment 69
6.1 Hardware Setup 69
6.2 Experiment Result 72
6.2.1 Frequency Response of the Cantilever 72
6.2.2 Resolution of DVD Pickup System 73
6.2.3 Scanning Result of Test Grating 74
Chapter 7 Conclusion 81
Reference 83
[1]G. Binning, H. Rohrer, C. Gerber, and E. Weibel, "Surface Studies by Scanning Tunneling Microscopy," Physical Review Letters, vol. 49, pp. 57-61, 1982.
[2]G. Binning, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, pp. 930-933, 1986.
[3]E. Meyer, H. J. Hug, and R. Bennewitz, Scanning Probe Microscopy: Springer, 2003.
[4]J.-A. Ruan and B. Bhushan, "Atomic-scale and microscale friction studies of graphite and diamond using friction force microscopy," Journal of Applied Physics, vol. 76, pp. 5022-5035, 1994.
[5]Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, "Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy," Surface Science, vol. 290, pp. L688-L692, 1993.
[6]J. Tamayo and R. Garcia, "Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy," Langmuir, vol. 12, pp. 4430-4435, 1996.
[7]S. N. Magonov, V. B. Elings, and M.-H. Whangbo, "Phase imaging and stiffness in tapping-mode atomic force microscopy," Surface Science, vol. 375, pp. L385-L391, 1997.
[8]A. Kuehle, A. H. Sorensen, J. B. Zandbergen, and J. Bohr, "Contrast artifacts in tapping tip atomic force microscopy," Applied Physics A: Materials Science & Processing, vol. 66, pp. S329-S332, 1998.
[9]G. Bar, R. Brandsch, and M.-H. Whangbo, "Correlation between frequency-sweep hysteresis and phase imaging instability in tapping mode atomic force microscopy," Surface Science, vol. 436, pp. L715-L723, 1999.
[10]R. Garcia and A. S. Paulo, "Dynamics of a vibrating tip near or in intermittent contact with a surface," Physical Review B, vol. 61, pp. R13381-R13384, 2000.
[11]R. Garcia and A. S. Paulo, "Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy," Physical Review B, vol. 60, pp. 4961-4967, 1999.
[12]T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity," Journal of Applied Physics, vol. 69, pp. 668-673, 1991.
[13]S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka, "High bandwidth nano-positioner: A robust control approach," Review of Scientific Instruments, vol. 73, pp. 3232-3241, 2002.
[14]H.-H. Huang, "Design and Implementation of a New 3-DOF Electromagnetic-Nanopositioner Utilizing Flexure Mechanism," Master Thesis, Department of Electrical and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[15]G. Meyer and N. M. Amer, "Novel optical approach to atomic force microscopy," Applied Physics Letters, vol. 53, pp. 1045-1047, 1988.
[16]D. Rugar, H. J. Mamin, and P. Guethner, "Improved fiber-optic interferometer for atomic force microscopy," Applied Physics Letters, vol. 55, pp. 2588-2590, 1989.
[17]N. Blanc, J. Brugger, N. F. d. Rooij, and U. Durig, "Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors," Journal of Vacuum Science and Technology B, vol. 14, pp. 901-905, 1996.
[18]M. Tortonese, R. C. Barrett, and C. F. Quate, "Atomic resolution with an atomic force microscope using piezoresistive detection," Applied Physics Letters, vol. 62, pp. 834-836, 1993.
[19]T. Sulchek, R. Hsieh, J. D. Adams, G. G. Yaralioglu, S. C. Minne, C. F. Quate, J. P. Cleveland, A. Atalar, and D. M. Adderton, "High-speed tapping mode imaging with active Q control for atomic force microscopy," Applied Physics Letters, vol. 76, pp. 1473-1475, 2000.
[20]P.-L. Yen, W.-I. Hsiao, and T.-S. Lu, "Developing a new low-cost XY table using optical pickup head with adaptive controller," Proceedings of the 2004 IEEE International Conference on Control Applications, pp. 117-122, 2004.
[21]T. R. Armstrong and M. P. Fitzgerald, "An autocollimator based on the laser head of a compact disc player," Measurement Science and Technology, pp. 1072-1076, 1992.
[22]K.-C. Fan, C.-Y. Lin, and L.-H. Shyu, "The development of a low-cost focusing probe for profile measurement," Measurement Science and Technology, pp. N1-N7, 2000.
[23]A. Bartoli, P. Poggi, F. Quercioli, and B. Tiribilli, "Fast One-Dimensional Profilometer with a Compact Disc Pickup," Applied Optics, vol. 40, pp. 1044-1048, 2001.
[24]K. Ehrmann, A. Ho, and K. Schindhelm, "A 3D optical profilometer using a compact disc reading head," Measurement Science and Technology, pp. 1259-1265, 1998.
[25]K.-Y. Huang, E.-T. Hwu, H.-Y. Chow, and S.-K. Hung, "Development of an optical pickup system for measuring the displacement of the micro cantilever in scanning probe microscope," IEEE International Conference on Mechatronics, pp. 695-698, 2005.
[26]F. Quercioli, B. Tiribilli, C. Ascoli, P. Baschieri, and C. Frediani, "Monitoring of an atomic force microscope cantilever with a compact disk pickup," Review of Scientific Instruments, vol. 70, pp. 3620-3624, 1999.
[27]E.-T. Hwu, K.-Y. Huang, S.-K. Hung, and I.-S. Hwang, "Measurement of Cantilever Displacement Using a Compact Disk/Digital Versatile Disk Pickup Head," International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, pp. 2368-2371, 2005.
[28]G. Trudeau, J.-M. Dumas, P. Dupuis, M. Guerin, and C. Sandorfy, Van der Waals Systems: Springer, 1980.
[29]B. Cappella and G. Dietler, "Force-distance curves by atomic force microscopy," Surface Science Reports, vol. 34, pp. 1-104, 1999.
[30]J. N. Israelachvili, Intermolecular and surface forces: Academic Press, 1992.
[31]S. Ciraci, E. Tekman, A. Baratoff, and I. P. Batra, "Theoretical study of short- and long-range forces and atom transfer in scanning force microscopy," Physical Review B, vol. 46, pp. 10411-10422, 1992.
[32]B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, "Effect of contact deformations on the adhesion of particles," Journal of Colloid and Interface Science, vol. 53, pp. 314-326, 1975.
[33]D. Croft, G. Shed, and S. Devasia, "Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application," Journal of Dynamic Systems, Measurement, and Control, vol. 123, pp. 35-43, 2001.
[34]K. Furutani, M. Urushibata, and N. Mohri, "Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation," Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pp. 1504-1509, 1998.
[35]B.-M. Chen, T.-H. Lee, C.-C. Hang, Y. Guo, and S. Weerasooriya, "An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis," IEEE Transactions on Control Systems Technology, vol. 7, pp. 160-174, 1999.
[36]M. Goldfarb and N. Celanovic, "Behavioral implications of piezoelectric stack actuators for control of micromanipulation," Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp. 226-231, 1996.
[37]K. K. Leang and S. Devasia, "Iterative feedforward compensation of hysteresis in piezo positioners," Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 2626-2631, 2003.
[38]T.-S. Low and W. Guo, "Modeling of a three-layer piezoelectric bimorph beam with hysteresis," Journal of Microelectromechanical Systems, vol. 4, pp. 230-237, 1995.
[39]M. Goldfarb and N. Celanovic, "Modeling piezoelectric stack actuators for control of micromanipulation," Control Systems Magazine, IEEE, vol. 17, pp. 69-79, 1997.
[40]K. Takahashi, K. Tateishi, Y. Tomita, and S. Ohsawa, "Application of the Sliding-Mode Controller to Optical Disk Drives," Japanese Journal of Applied Physics, vol. 43, pp. 4801-4805, 2004.
[41]C.-J. Chien, K.-C. Sun, A.-C. Wu, and L.-C. Fu, "A robust MRAC using variable structure design for multivariable plants," Automatica, vol. 32, pp. 833-848, 1996.
[42]C.-L. Hwang, Y.-M. Chen, and C. Jan, "Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control," IEEE Transactions on Control Systems Technology, pp. 56-66, 2005.
[43]P. Krejci and K. Kuhnen, "Inverse control of systems with hysteresis and creep," Proceedings of IEE Control Theory and Applications, vol. 148, pp. 185-192, 2001.
[44]S.-K. Hung, E.-T. Hwu, I.-S. Hwang, and L.-C. Fu, "Postfitting Control Scheme for Periodic Piezoscanner Driving," Japanese Journal of Applied Physics, vol. 45, pp. 1917-1921, 2006.
[45]T. Sulchek, G. G. Yaralioglu, C. F. Quate, and S. C. Minne, "Characterization and optimization of scan speed for tapping-mode atomic force microscopy," Review of Scientific Instruments, vol. 73, pp. 2928-2936, 2002.
[46]G. Schitter, G. E. Fantner, J. H. Kindt, P. J. Thurner, and P. K. Hansma, "On Recent Developments for High-Speed Atomic Force Microscopy," Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 261-264, 2005.
[47]M. J. Rost, L. Crama, P. Schakel, E. v. Tol, G. B. E. M. v. Velzen-Williams, C. F. Overgauw, H. t. Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. J. Katan, K. Schoots, R. Schumm, W. v. Loo, T. H. Oosterkamp, and J. W. M. Frenken, "Scanning probe microscopes go video rate and beyond," Review of Scientific Instruments, vol. 76, pp. 053710, 2005.
[48]http://www.nanosensors.com/PPP-NCH.htm
[49]S. Kleindiek, H. S. Kim, E. Kratschmer, and T. H. P. Chang, "Miniature three-axis micropositioner for scanning proximal probe and other applications," Journal of Vacuum Science and Technology B, vol. 13, pp. 2653-2656, 1995.
[50]G. Mathias, "Scanning tunneling microscopy in UHV with an X, Y, Z micropositioner," Review of Scientific Instruments, vol. 65, pp. 2252-2254, 1994.
[51]U. Rabe, J. Turner, and W. Arnold, "Analysis of the high-frequency response of atomic force microscope cantilevers," Materials Science Processing, vol. 66, pp. S277-S282, 1998.
[52]G.-Y. Chen, R. J. Warmack, A. Huang, and T. Thundat, "Harmonic response of near-contact scanning force microscopy," Journal of Applied Physics, vol. 78, pp. 1465-1469, 1995.
[53]M. V. Salapaka, D. J. Chen, and J. P. Cleveland, "Linearity of amplitude and phase in tapping-mode atomic force microscopy," Physical Review B, vol. 61, pp. 1106-1115, 2000.
[54]A. S. Paulo and R. Garcia, "Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy," Physical Review B, vol. 64, pp. 193411, 2001.
[55]H. Goldstein, Classical Mechanics: Addison-Wesley, 1981.
[56]J. P. Cleveland, B. Anczykowski, A. E. Schmid, and V. B. Elings, "Energy dissipation in tapping-mode atomic force microscopy," Applied Physics Letters, vol. 72, pp. 2613-2615, 1998.
[57]J. Tamayo and R. Garcia, "Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy," Applied Physics Letters, vol. 73, pp. 2926-2928, 1998.
[58]T.-P. Chang, "Seismic response analysis of nonlinear structures using the stochastic equivalent linearization technique," Ph. D. Thesis, Columbia University, 1985.
[59]S. Tien, Z. Qingze, and S. Devasia, "Iterative control of dynamics-coupling effects in piezo-based nano-positioners for high-speed AFM," Proceedings of the 2004 IEEE International Conference on Control Applications, pp. 711-717, 2004.
[60]S.-H. Hsu and L.-C. Fu, "Robust output high-gain feedback controllers for the atomic force microscope under high data sampling rate," Proceedings of the 1999 IEEE International Conference on Control Applications, pp. 1626-1631, 1999.
[61]A. Sebastian, M. V. Salapaka, and J. P. Cleveland, "Robust control approach to atomic force microscopy," Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 3443-3444, 2003.
[62]G. Schitter, P. Menold, H. F. Knapp, F. Allgower, and A. Stemmer, "High performance feedback for fast scanning atomic force microscopes," Review of Scientific Instruments, vol. 72, pp. 3320-3327, 2001.
[63]G. Schitter, A. Stemmer, and F. Allgower, "Robust 2 DOF-control of a piezoelectric tube scanner for high speed atomic force microscopy," Proceedings of the 2003 American Control Conference, pp. 3720-3725, 2003.
[64]O. M. El Rifai and K. Youcef-Toumi, "On automating atomic force microscopes: an adaptive control approach," Proceedings of the 2004 IEEE Conference on Decision and Control, pp. 1574-1579, 2004.
[65]M.-S. Chen and F.-Y. Yang, "An Output Feedback Variable Structure Control Based on The LTR Observer," 2000.
[66]http://www.ntmdt-tips.com/catalog/gratings/afm_cal/products/TGQ1.html
[67]http://www.dspaceinc.com/ww/en/inc/home/products/hw/singbord/ds1104.cfm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top