跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 12:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉政宏
研究生(外文):Zheng-Hong Ye
論文名稱:熱電製冷散熱模組性能之研究
論文名稱(外文):Investigation and Analysis of Thermoelectric Cooling Module
指導教授:陳希立陳希立引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:117
中文關鍵詞:熱電製冷熱阻模型合適操作範圍
外文關鍵詞:Thermoelectric coolingThermal resistance modelApplicative range
相關次數:
  • 被引用被引用:4
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於電子元件的性能不斷提昇,所產生的發熱功率也隨之增加,加上製程技術的進步,使其體積愈來愈小,容易溫度過高影響其性能。熱電製冷(Thermoelectric cooling)技術係藉由調整輸入電流控制其冷端Peltier效應之吸熱量來降低熱源溫度,具有控制容易與體積小之優點,故適於電子散熱之用。本研究首先以理論方式分析熱電冷卻器之性能,並建立一套實驗方法求出性能參數。接著整合熱電冷卻器於氣冷散熱模組與水冷散熱模組之中,藉由實驗與理論的熱阻模型分析熱源加熱功率、熱電冷卻器輸入電流與熱源面積大小對於熱電散熱模組性能的影響,並進而提出可提升散熱效能之操作範圍。結果顯示欲使其COP大於1,則冷熱端溫差必須控制在10℃或更低;而在散熱模組實驗方面,固定輸入電流下散熱模組總熱阻會隨著加熱功率提高而上升,而在固定加熱功率下則隨電流增加而下降至最低點,再隨電流增加而上升,最低點在水冷熱電模組40㎜×40㎜加熱塊輸入電流為6~7A時,總熱阻-1.05℃/W。可提升散熱效果的最高加熱功率為水冷熱電模組在7A時的75W。而熱源面積與熱電冷卻器冷端面積不一時將增加擴散熱阻與額外吸熱量。實驗結果並顯示所建立的理論分析模式在熱電冷卻器冷端未與熱源接觸區域絕熱良好,且熱沉底部和熱端接觸區域溫度均勻的情況下非常符合,而在其他與前述狀況接近的條件下亦可得到相當程度的準確性。
The growth of chip performance and manufacturing technology results in high power dissipation and high operating temperature. Thermoelectric cooling device is suitable for electronic cooling with the advantages of sensitive temperature control and small size. This paper presents a theoretical analysis of the performance of thermoelectric cooler (TEC), and an experimental methodology for the thermoelectric parameters. The performance experiment result shows that COP of the TEC is greater than 1 if the temperature difference between cold and hot side of thermoelectric cooler is less than 10℃. Then TEC is applied into air cooling module or water cooling module to become TEC air cooling module or TEC water cooling module. The influences of heating power, input electrical current and heat source area on the performance of cooling module are investigated by means of thermal resistance model. Then the applicative range is given. The experimental result shows the total thermal resistance increases with the increasing heating power; while applying a fixed heating power there exists an optimum input current that the total thermal resistance is minimum, in water TEC module the optimum current is about 6~7A and the lowest total thermal resistance is -1.05℃/W. The water cooling module with TEC works better than which without TEC until heating power reaches 75W. It is found that there exists extra heat absorbed from the environment due to the difference of heat source area and TEC cold side area. The experimental result fits well with the theoretical analysis of thermal resistance model under the circumstances of good heat insulation of the rest area of TEC cold side that is not contacted with the heat source and uniform temperature of heat sink area that is contacted with the hot side of TEC. So the theoretical analysis provides a quite consonant prediction of the performance of TEC cooling module with operating conditions close to the former twos.
摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 8
1.4 研究方法 9
第二章 熱電冷卻器性能分析 13
2.1 熱電效應原理 13
2.1.1 焦耳效應(Joule effect) 13
2.1.2 西貝克效應(Seebeck effect) 13
2.1.3珀爾帖效應(Peltier effect) 14
2.1.4湯木森效應(Thomson effect) 14
2.1.5熱電效應之熱力學關係 15
2.2 熱電冷卻器原理 17
2.2.1 熱電冷卻器之熱力學關係 17
2.2.2 熱電冷卻器性能分析 19
2.3 熱電性能參數實驗 21
2.3.1 實驗系統 21
2.3.2 實驗設備 22
2.3.3 實驗參數設定 23
2.3.4 實驗程序 23
2.4 結果與討論 24
2.4.1 熱電性能參數 24
2.4.2 冷熱端溫差與輸入電流之性能曲線 25
2.4.3 熱電冷卻器之效率 25
第三章 熱電冷卻器應用於氣冷散熱模組之分析 33
3.1 氣冷式散熱模組 33
3.1.1 界面熱阻 34
3.1.2 熱沉熱阻 35
3.2 氣冷熱電散熱模組 37
3.2.1 熱電熱阻 38
3.2.2 熱沉熱阻 41
3.3 實驗與量測設備建立 42
3.3.1 實驗系統 42
3.3.2 實驗設備 43
3.3.3 實驗參數設定 44
3.3.4 實驗程序 45
3.4 結果與討論 46
3.4.1 加熱功率對系統性能影響 46
3.4.2 輸入電流對系統性能影響 48
3.4.3 熱源面積對系統性能影響 49
3.4.4 氣冷模組與氣冷熱電模組之比較 50
3.4.5 理論與實驗結果比較 50
第四章 熱電冷卻器應用於水冷散熱模組之分析 73
4.1 水冷式散熱模組 73
4.1.1 介面熱阻 74
4.1.2 水套熱阻 75
4.1.3 熱沉熱阻 77
4.2水冷熱電散熱模組 77
4.2.1 熱電熱阻 79
4.2.2 水套熱阻 80
4.2.3 熱沉熱阻 81
4.3實驗與量測設備建立 82
4.3.1 實驗系統 82
4.3.2 實驗設備 83
4.3.3 實驗參數設定 84
4.3.4實驗程序 85
4.4 結果與討論 86
4.4.1加熱功率對系統性能影響 86
4.4.2 輸入電流對系統性能影響 87
4.4.3 熱源面積對系統性能影響 88
4.4.4 氣冷模組與氣冷熱電模組之比較 89
4.4.5 理論與實驗結果比較 89
第五章 結論與建議 108
5.1 結論 108
5.2 建議 110
參考文獻 112
1.“Assembly and Packaging,” in The International Technology Roadmap for Semiconductors, 2005 ed: Semiconductor Industry Association, 2005.
2.Gaensslen, F.H., “MOS Devices and Integrated Circuits at Liquid Nitrogen Temperature,” 1980 IEEE ICCD Proceedings, pp. 450-452, 1980.
3.Jaeger, R.C., “Development of Low Temperature CMOS for High Performance Computer Systems,” IEEE International Conference on Computer Design: VLSI in Computers, pp. 128-130, 1986.
4.Taur, Y. and Nowak, E.J., “CMOS Devices Below 0.1 pm: How High Will Performance Go?”, Electron Devices Meeting Technical Digest, pp. 215-218, 1997.
5.Harper, D. R. and Brown, “Mathematical Equations for Heat Conduction in the Fins if Air Cooled Engines,” NACA Report No.158, 1922.
6.Murray, M. N., “Heat Transfer Through an Annular Disk or Fin of Uniform Thickness,” Trans. ASME, J. Applied Mech., 60, A78, 1938.
7.D. Strassberg, "Cooling Hot Microprocessor," EDN, Vol. 39, pp. 40-50, 1994.
8.R.C. Chu, “Thermal management roadmap cooling electronic products from handheld device to supercomputers,” MIT Rohsenow Symposium, Cambridge, MA, May 2002.
9.Chu, R. C., Gupta, O. R., Hwang, U. P., Moran, K. P., and Simons, R. E., 1969, ‘‘Liquid Cooling Technology for High-Performance Packages and Systems,’’ IBM TR 00.1945.
10.A. E. Bergles, A. Bar-Cohen, “Direct liquid cooling of microelectronic components,” in Advances in Thermal Modeling of Electronic Components and Systems, A. Bar-Cohen and A. D. Kraus, Eds. New York: ASME Press, 1990, vol. 2, pp. 233–342.
11.A. E. Bergles, A. Bar-Cohen, “Immersion cooling of digital computers,” in Cooling of Electronic Systems, S. Kakac, H. Yuncu, and K. Hijikata, Eds. Boston, MA: Kluwer, 1994, pp. 539–621.
12.F. P. Incropera, "Liquid Immersion Cooling of Electronic Components," Heat Transfer in Electronic and Microelectronic Equipment, A. E. Bergles (ed.), Washington, D.C.: Hemisphere Publishing Corporation, pp. 407-444, 1990.
13.W. Nakayama and A. E. Bergles, "Cooling of Electronic Component: Past, Present and Future," Heat Transfer in Electronic and Microelectronic Equipment, A. E. Bergles (ed.), Washington, D.C.: Hemisphere Publishing Corporation, pp. 3-39, 1990.
14.A. Bar-Cohen, "Thermal Management Electronic Components with Dielectric Liquids," International Journal of JSME, Ser. B, Vol. 16, No. 1, pp. 1-25, 1993.
15.邱治凱,「毛細熱板性能之研究」,碩士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)。
16.D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron. Device Lett., vol. EDL-2, pp. 126–129, 1981.
17.Hoopman, T. L., “Micromachined Structures.” Microstructures, Sensors and Actuators, ASME DSC-19, 117-174, 1990.
18.Bier, W., W. Keller, G. Linder, D. Siedel, and K. Schubert, “Manufacturing and Testing of Compact Micro Heat Exchangers with High Volumetric Heat Transfer Coefficients.” Microstructures, Sensors and Actuators, ASME DSC-19, 189-197, 1990.
19.J. S. Kolodzey, “Cray-1 computer technology,” IEEE Trans. Compon.,Hybrids, Manufact. Technol., vol. CHMT-4, no. 2, pp. 181–186, Jun. 1981.
20.N. S. Ashraf, H. C. Carter, K. Casey, L. C. Chow, S. Corban, M. K. Drost, A. J. Gumm, Z. Hao, A. Q. Hasan, J. S. Kapat, L. Kramer, M. Newton, K. B. Sundaram, J. Vaidya, K. Yerkes, and C. C. Wong, “Design and Analysis of a Meso-Scale Refrigerator,” in ASME International Mechanical Engineering Congress & Exposition, Nashville, Tennessee, November 1999.
21.H. C. Carter, L. C. Chow, J. S. Kapat, A. Laveau, K. B. Sundaram, and J. Vaidya, “Component Fabrication and Testing for a Meso-Scale Refrigerator,”, AIAA Paper no. 99-4514, 1999.
22.M. A. Shannon, M. L. Philpott, N. R. Miller, C.W. Bullard, D. J. Beebe, A. M. Jacobi, P. S. Hrnjak, T. Saif, N. Aluru, H. Sehitoglu, A. Rockett, and J. Economy, “Integrated Mesoscopic Cooler Circuits (IMCCS),” in Proceedings of the ASME Advanced Energy Systems Division, vol. AES-39, 1999, pp. 75–82.
23.A. Laveau, J. S. Kapat, L. C. Chow, E. Enikov, and K. B. Sundaram, “Design, Analysis and Fabrication of a Meso-Scale Centrifugal Compressor,” in ASME International Mechanical Engineering Congress & Exposition, Orlando, Florida, November 5-10, 2000.
24.R. Trujillo, J.I. Mou, P.E. Phelan, and D. S. Chau, “A Prototype Mesoscale Compressor Using Electrostrictive Actuation,” Energy Conversion & Management, 2001, submitted for publication.
25.R. Trujillo, J.I. Mou, P.E. Phelan, and D. S. Chau, “A Prototype Mesoscale Compressor Using Electrostrictive Actuation,” Energy Conversion & Management, 2001, submitted for publication.
26.Nolas, G.S., Slack, G.A., Cohn, J.L., and Schujman, S.B., "The Next Generation of Thermoelectric Materials," Proceedings of the 17th International Conference on Thcrmoclcctrics, pp. 294-297, 1998.
27.Kraus, AD., Cooling Electronic Equipment, Prcntice-Hall, New York, NY, 1965.
28.Kolander, W.L., and Lyon, H.B., "Thermoelectric Cooler Utility for Electronic Applications," ASME HTD-Vol. 239, National Heat Transfer Conference, Vol. 7, 1996.
29.Vandersande, J.W., and Fleurial, J-P., "Thermal Management of Power Electronics Using Thermoelectric Coolers," Proceedings of the 15th International Conference on Thermoelectrics, pp. 252-255, 1996.
30.Stockholm, J.G., "Current State of Peltier Cooling," Proceedings of the 16th International Conference on Thermoelectrics, pp. 37-46, 1997.
31.Morelli, D.T., "Potential Applications of Advanced Thermoclectrics in the Automobile Industry," Procecdings of the 13th International Conference on Thermoclcctrics, pp. 383-386, 1996.
32.Fleurial, J.P., Borshchevsky, A., Caillat, T., and Ewell, R., “New Material and Devices for Thermoelectric Applications,” IECEC, ACS Paper No. 97419, pp. 1080-1085, 1997.
33.Dresselhaus, M.S., Koga, T., Sun, X., Cronin, S.B., Wang, Cronin, S.B., Wang, K.L., and Chen, G., "Low Dimensional Thermoelectrics," Proceedings of the 16th International Conference on Thermoelectrics, pp. 12-20, 1997.
34.Hillhouse H.W. et al., “Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous films,” Microporous and Mesoporous Materials, Vol. 47, pp. 39-50, 2001.
35.邱瑞易, 簡瑞與, “薄膜式熱電致冷器之性能探討”, http://www.hvac.org.tw/hvac/mesg/file/1401a4-1.pdf.
36.Min G, Rowe D.M., “Improved model for calculating the coefficient of performance of a Peltier module,” Energy Conversion and Management, Vol. 43, pp. 221-228, 2000.
37.Xuan X.C., “Investigation of Thermal Contact Effect on Thermoelectric Coolers,” Energy Conversion and Management, Vol. 44, pp. 399-410, 2003.
38.Huang B.J., Chin C.J., and Duang C.L., “A Design Method of Thermoelectric Coolers,” International Journal of Refrigeration, Vol. 23, pp. 208-218, 2000
39.Chen K et al., “Analysis of the Heat Transfer Rate and Efficiency of Thermoelectric Cooling Systems,” International Journal of Energy Research, Vol. 20(5), pp. 399-417, 1996.
40.Selahattįn Göktun, “Optimal Performance of Thermoelectric Refrigerator,” Energy Sources, Vol. 18, pp. 531-536, 1996.
41.Gilley et al. 1999. “Thermoelectric refrigerator with evaporating/condensing heat exchanger,” United States Patent, No. 6003319, December 21.
42.Riffat S.B., Omer S.A., Ma X., “A Novel Thermoelectric Refrigeration System employing Heat Pipes and a Phase Material: an Experimental Investigation,” Renewable Energy, Vol. 23, pp. 313-323, 2001.
43.Astrain D., Vián J.G., Domínguez M., “Increase the COP in the Thermoelectric Refrigeration by the Optimization of Heat Dissipation,” Applied Thermal Engineering, Vol. 23, pp. 2183-2200, 2003.
44.Hammoud J.Y., Abazardia N., “Effects of the Liquid Inlet Temperature on the Thermoelectric Cooler Performance in a Liquid-TEC Thermal System”, 21st International Conference on Thermoelectrics, pp. 506-510, 2002.
45.Callen H. B, “The Application of Onsager’s Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects,” Physical Review, Vol. 73, No. 11, 1948.
46.Yovanovich M. M., Culham J. R. and Teertstra P., “Calculating interface resistance,” Electronics Cooling, Vol.3, No.2, 1997.
47.Cengel, Y.A., “Heat Transfer A Practical Approach”, pp.177-192, 350-363, 1998.
48.D. Copeland, Optimization of parallel plate heat sinks for forced convection, in: Proceedings of 16th IEEE SEMITHERM Symposium, San Jose, 2000, pp. 266–272.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top