跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮國治
研究生(外文):Guo-Jr Feng
論文名稱:以鹼性溶液與熱處理法進行鈦合金表面改質之研究
論文名稱(外文):Study on surface modification by alkali and heat treatment in Ti alloys
指導教授:潘永寧
指導教授(外文):Yung-Ning Pan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:鈦鈮合金鹼性溶液及熱處理法生物相容性
外文關鍵詞:Titanium-niobium alloysAlkali solution and heat treatmentBiocompatibility
相關次數:
  • 被引用被引用:10
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對先前所開發之高強度、低楊氏係數與含低毒性元素之Ti-Nb合金-Ti-30Nb-1Fe-1Hf與Ti-40Nb-1Hf,以鹼性溶液與熱處理進行表面改質,再以體外骨母細胞培養實驗來評估其生物相容性,並與商用純鈦及Ti-6Al-4V合金作一比較。藉由鹼性溶液及熱處理可於商用純鈦及Ti-6Al-4V表面成長多孔性的表面組織,而對於Ti-30Nb-1Fe-1Hf及Ti-40Nb-1Hf之表面則會形成不規則裂痕的形貌。又,利用鹼性溶液及熱處理可增加鈦合金表層氧及氫氧根的含量,有效改善表面潤濕性。對於表層化學組成而言,經鹼性溶液及熱處理可促使純鈦及Ti- 6Al-4V的表層生成TiO2,而促使Ti-30Nb-1Fe-1Hf及Ti-40Nb- 1Hf的表層生成TiO2與Nb2O5。對於Ti-30Nb-1Fe-1Hf及Ti-40Nb- 1Hf合金而言,以鹼性溶液及熱處理法作表面改質之後,表面所形成之不規則狀裂痕形貌、表層氧及氫氧根的含量增加,而提升表面潤濕性,以及在表層所生成之TiO2與Nb2O5等,均有利於骨母細胞的貼附及增殖。體外生物相容性實驗結果顯示,Ti-30Nb-1Fe-1Hf及Ti-40Nb- 1Hf之細胞貼附形貌、細胞總數與MTT吸光值分析皆與商用純鈦及Ti- 6Al-4V合金相近。綜上所述,本研究以鹼性溶液及熱處理法對於Ti-30Nb-1Fe- 1Hf及Ti-40Nb-1Hf合金進行表面改質之後,可增進該合金之生物相容性。
The previously developed titanium-niobium alloys – Ti-40Nb-1Hf and Ti-30Nb-1Fe-1Hf alloys – exhibit relatively high strength and low elastic modulus and are considered quite suitable for implants application. This study employed alkali solution treatment and heat treatment to modify the surfaces of Ti-40Nb-1Hf and Ti-30Nb-1Fe-1Hf alloys together with the commercially pure Ti and Ti-6Al-4V alloy, and then the biocompatibility of the treated alloys was analyzed by means of osteoblast cell culture in vitro. The results indicate that porous surfaces were obtained for pure Ti and Ti-Al-4V, while surfaces with irregular cracks were obtained for Ti-40Nb-1Hf and Ti-30Nb-1Fe-1Hf alloys, after surface modification. Also, the surface wettability was improved after alkali solution treatment and heat treatment due to the increase of oxygen and hydroxyl on the surface layer. In addition, both alkali and heat treatments enhanced the growth of TiO2 on the surface layer of the commercially pure Ti and Ti-6Al-4V, and TiO2 and Nb2O5 for Ti-40Nb-1Hf and Ti-30Nb-1Fe-1Hf alloys. The formation of irregular cracks on the treated surfaces together with the increase in oxygen and hydroxyl, and TiO2 and Nb2O5 on the surface layer had been found to improve surface wettability and also the osteoblast attachment and proliferation of the surface-treated alloys. This has also been confirmed in vitro study, where the cell morphology, cell number and MTT optical assay of Ti-40Nb-1Hf and Ti-30Nb-1Fe-1Hf alloys are similar to those of pure Ti and Ti-6Al-4V alloy.
目 錄
中文摘要……………………………………………………………………………….Ⅰ
英文摘要……………………………………………………………………………….Ⅱ
目錄…………………………………………………………………………………….Ⅲ
表目錄………………………………………………………………………………….Ⅳ
圖目錄………………………………………………………………………………….Ⅴ
第一章 諸論 1
1.1前言 1
1.2研究動機 3
第二章 文獻探討 7
2.1 生醫材料 7
2.1.1 生醫材料的簡介 7
2.1.2 生醫植入材的種類 7
2.1.3 鈦及鈦合金 9
2.1.4 生醫植入材的性質與應用 10
2.2 金屬離子釋出 11
2.3 鈦及鈦合金生醫植入材表面處理 13
2.3.1 表面處理 13
2.3.2 表面處理-物理方法 14
2.3.3 表面處理-化學方法 16
2.3.4 表面處理-機械方法 18
2.4 鹼與熱處理 19
2.5 骨組織與骨細胞 21
2.5.1 骨細胞與骨生成 21
2.5.2 骨細胞的貼附與生醫材料表面性質的關係 23
第三章 實驗步驟及方法 34
3.1 試片準備及前處理 34
3.2 試片表面處理 34
3.3 試片分析 35
3.3.1 基材組成元素分析 35
3.3.2 試片表面形貌及元素分析 35
3.3.3 試片表面性質分析 36
3.3.4 生物相容性分析 36
第四章 結果與討論 42
4.1 表面形貌及元素成分分析 42
4.2 表面物理及化學性質分析 43
4.2.1 維克氏硬度與液滴法實驗結果與討論 43
4.2.2 XRPD與ESCA實驗結果與討論 44
4.3 生物相容性 49
4.4 綜合討論 50
第五章 總結 95
參考文獻……………………………………………………………………………….98
http://www.stat.gov.tw/ct.asp?xItem=15408&CtNode=3623 中華民國統計資訊網,上網日期:2006.05.25
http://www.holyhealth.com.tw/modules/news/article.php?storyid=254幸康健康・醫療・保健資訊網,上網日期:2006.03.11
J.W. Boretos and M. Eden. “Present and Potential Biomedical Applications of Composite Materials Technology” in Contemporary Biomaterials: Material and Host Response, Clinical Applications, New Technology and Legal Aspects, 453-476 (1984)(J.L. Katz)
M.S. Block, J.N. Kent, and L.S. Guerra. “Implants in dentistry”, 45-62(1997)
Brunette DM, Tengvall P, Textor M, Thomsen P. “Titanium in medicine”, New York: Springer; 2001
Steinemann SG. ”Titanium – the material of choice?”Periodontology 2000 1998; 17:7-21
Lausmaa J, Kasemo B. “Surface spectroscopic characterization of titanium implant material”, Appl Surf Sci, 45: 133-46 (1990)
Shunsuke Fujibayashi, Masashi Neo, Hyun-Min Kim, Tadashi Kokubo. “Osteoinduction of porous bioactive titanium metal”, Biomaterials, 25: 443-50 (2004)
Jae Man Choi, Hyoun Ee Kim, In Seop Lee, “Ion beam assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate”, Biomaterials, 21: 469-73 (2000)
A. Stoch, A. Brozek, G. Kmita, J. Stoch, W. Jastrzebski and A. Rakowska,
“Electrophoretic coating of hydroxyapatite on titanium implants”, Journal of
Molecular Structure, 596: 191-200 (2001)
陳威明,“淺談人工髖關節置換術”,榮總人第12卷第11期(1997)
周邦彥,“骨科生醫材料之發展與應用”,技術與訓練第27卷第4期163-171,(2002.08)
Y.H. Hona, J.Y. Wangb, Y.N. Pana, ” Influence of hafnium content on mechanical
behaviors of Ti–40Nb–xHf alloys”, Materials Letters, 58, 3182-86 (2004)
Hironobu Matsuno, Atsuro Yokoyama, Fumio Watari, Motohiro Uo, Takao Kawasaki, ” Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium”, Biomaterials, 22, 1253-62 (2001)
M.F. Lopez, A. Gutierrez, J.A Jimenez, “Surface characterization of new non-toxic
titanium alloys for use as biomaterials”, Surface Science, 482-485, 300-05 (2001)
洪炎輝,“生醫用鈦合金之合金開發及機械性質研究",國立台灣大學機械工程研究所博士論文,93年7月
Sujata V. Bhat, “Biomaterial”, Second edition, 9(2005)
Sujata V. Bhat, “Biomaterial”, Second edition, 1(2005)
Sujata V. Bhat, “Biomaterial”, Second edition, 2(2005)
闕山璋,“金屬生醫材料簡介",化工技術第九卷第五期 148-163 (2001.05)
Sujata V. Bhat, “Biomaterial”, Second edition, 40(2005)
S. Hontsu, T. Matsumoto, J. Ishii, M. Nakamori, H. Tabata, T. Kawai, “Electrical properties of hydroxyapatite thin films grown by pulsed laser deposition”, Thin Solid Film, 295 214-17 (1997)
Miguel Manso, Carmen Jimenez, Carmen Morant, Pilar Herrero, JM Martinez-Duart, “Electrodeposition of hydroxyapatite coatings in basic conditions”, Biomaterial, 21
1755-61 (2000)
J. Ma, C. Wang, K.W. Peng, “Electrophoretic deposition of porous hydroxyapatite
scaffold”, Biomaterial, 24 3505-10 (2003)
S. Gokul Lakshmi, D. Arivuoli, “Enhanced wear resistance of Ti-5Al-2Nb-1Ta
orthopaedic alloy by nitrogen ion implantation”, Tribology International, 39 548-52
(2006)
Saima N. Nayab, Frances H. Jones, Irwin Olsem, “Effect of calcium ion
implantation on human bone cell interaction with titanium”, Biomaterial, V26: I23,
4717-27 (2005)
Q. Wei, A.K. Sharma, J. S. Ankar, J. Narayan, “Mechaical properties of diamond-like carbon composite thin films prepared by laser deposition”, Composites: part b 30, 675-84 (1999)
R. Boyer, G. Welsh, E. W. Collings, “Materials properties handbook-Titanium
alloys”, ASM Interational, Materials Park, OH (1994).
Ani Zhecheva, Wei Sha, Savko Malinov, Adrian Long, “Enhancing the
microstructure and properties of titanium alloys through nitriding and other surface
engineering methods”, Surface and Coatings Technology, 200, 2192-2207 (2005)
闕山璋,“金屬生醫材料簡介",化工技術第九卷第五期 148-163 (2001.05)
http://www.twocw.net/mit/ 麻省理工學院「開放式課程網頁」,上網日期:2006/03/14
G. J. Thompson, D. A. Puleo, “Ti-6Al-4V ion solution inhibition of osteogenic cell
phenotype as a function of differentiation timecourse in vitro”, Biomaterials, 17,
1949-54 (1996)
P. Ducheyne, G. Willems, M. Martens, J. Helsen, “In vivo metal-ion release from
porous titanium-fiber material”, J. Biomed. Mater. Res, 18, 293-308 (1984)
Dorr LD, Bloebaum R, Emmanual J, Meldrue R. “Histologic, biochemical and ion
analysis of tissue and fluids retrieved during total hip arthroplasty”, Clin. Orthop.
261, 82-95 (1990)
Hennig F. F, Raithel H. J, Schaller K. H, DÖhler J. R, “Nicklel-chrome- and
cobalt-concentrations in human tissue and body fluids of hip prosthesis patients”, J.
Trace. Elem. Electrolytes Health Dis, 6, 239-43 (1992)
M. Browne, P. J. Gregson, “Surface modification of titanium alloy implants”,
Biomaterials, v15, n11, 894-98 (1994)
Ching-Hsin Ku, Dominique P. Pioletti, Martin Browne, Peter J. Gregson, “Effect of
different Ti-6Al-4V surface treatments on osteoblasts behaviour”, Biomaterials, 23,
1447-54 (2002)
B. W. Callen, B. F. Lowenberg, S. Lugowski, R. N. S. Sodhi and J. E. Davies,
“Nitric acid passivation of Ti-6Al-4V reduces thickness of surface oxide layer and
increases trace element release”, J. Biomed. Mater. Res, 29, 279-290 (1995)
J. Pan, C. Leygraf, D. Thierry, A. M. Ektessabi, “Corrosion resistance for
biomaterial applications of TiO2 films deposited on titanium and stainless steel by
ion-beam-assisted sputtering”, J. Biomed. Mater. Res, 35, 309-18 (1997)
T. M. Lee, E. Chang, C. Y. Yang, “A comparison of the surface characteristics and
ion release of Ti-6Al-4V and heat-treated Ti-6Al-4V”, J. Biomed. Mater. Res, 14,
499-511 (1999)
Xuanyong Liu, Paul K. Chu, Chuanxian Ding, “Surface modification of titanium,
titanium alloys, and related materials for biomedical applications”, Materials
Science and Engineering, R47, 49-121 (2004)
L. Hao, J. Lawrence, L. Li, “Manipulation of the osteoblast response to a Ti-6Al-4V
titanium alloy using a high power diode laser”, Applied Surface Science, 247,
602-06 (2005)
Y. Khelfaoui, M. Kerkar, A. Bali, F. Dalard, “Electrochemical characterization of a
PVDfilm of titanium on AISI 316L stainless steel”, Surface and Coatings
Technology, 200, 4523-29 (2006)
Jerzy Robert Sobiecki, Tadeusz Wierzchon, “Glow discharge assisted oxynitriding
of the binary Ti6Al2Cr2Mo titanium alloy”, Vacuum, 79, 203-08 (2005)
P. Yang, N. Huang, Y. X. Leng, J. Y. Chin, H. Sun, J. Wang, F. Chen, P. K. Chu, “In
vivo study of Ti-O th9n film fabricated by plasma immersion ion implantation”,
Surface and Coatings Technology, 156, 284-88 (2002)
Shinji Takemoto, Tatsuhiro Yamamoto, Kanji Tsuru, Satoshi Hayakawa, “Platelet
aghensopm pn titanium oxide gels: effect of surface oxidation”, Biomaterials, 25,
3485-92 (2004)
Long-Hao Li, Yong-Min Kong, Hae-Won Kim, Young-Woon Kim, Hyoun-En Kim,
Seong-Joo Heo, Jai-Young Koak, “Improved biological performance of Ti implants
due to surface modification by micro-arc oxidation”, Biomaterial, 25, 2867-75
(2004)
Wei-Xu, Wangyu Hu, Meiheng Li, Cui’e Wen, “Sol-gel derived hydroxyapatite /
titania biocoatings on titanium substrate”, Materials Letters, 60, 1575-78 (2006)
L. Tang, C. Tsai, W. W. Gerberich, L. Kruckeberg and D. R. Kania,
“Biocompatibility of chemical-vapour-deposited diamond”, Biomaterial, 16, 483-88
(1995)
同註39
D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, Y. F. Missirlis,
“Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone
marrow cell response and on protein adsorption”, Biomaterials, 22, 1241-51 (2001)
Tadashi Kokubo, Fumiaki Miyaji, and Hyun-Min Kim, “Spontaneous formation of
bonelike apatite layer on chemically treated titanium metals”, J. Am. Ceram. Soc,
79, 1127-29 (1996)
Hyun-Min Kim, Fumiaki Miyaji, Tadashi Kokubo, and Takashi Nakamura,
“Preparation of bioactive Ti and its alloys via simple chemical surface treatment”, J.
Biomed. Mater. Res, 32, 409-17 (1996)
H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, “Effect of heat treatment on
apatite-forming ability of Ti metal induced by alkali treatment”, J. Mater. Sci: Mater
Medic, 8, 341-47 (1997)
同註52
Lenka Jonasova, Frank A. Muller, Ales Helebrant, Jakub Strnad, Peter Greil,
“Biomimetic apatite formation on chemically treated titanium”, Biomaterials, 25,
1187-94 (2004)
同註56
Ken Nishio, Masash Neo, Shiger Nishiguchi, Hyun-Min Kim, Tadashi Kokubo,
Takashi Nakamira, “The effect of alkali- and heat-treated titanium and
apatite-formed titanium on osteoblastic differentiation of bone marrow cells”, J.
Biomed. Mater. Res, 52, 652-61 (2000)
Jeffrey O. Hollinger, Thomas A. Einhorn, Bruce A. Doll, and Charles Sfeir, “Bone tissue engineering”, CRC press.
同註58
L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, C.
Martelet, “Relationship between surface properties (roughness, wettability) of
titanium and titanium allots and cell behavior”, Materials Science and Engineering
C, 23 551-60 (2003)
Meyle J, Gultig K, Wolburg H, Von Recum AF, “Fibroblast anchorage to
microtextured surface”, J. Biomed. Mater. Res, 27, 1553-57 (1993)
E.T. den Braber, J.E. de RUIJTER, H.T.J. Smits, L.A. Ginsel, A.F. von Recum, J.A.
Ginsel, “Quantitative analysis of cell proliferation and orientation on substrata with
uniform parallel surface micro-grooves”, Biomaterials, 17, 1093-99 (1996)
J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D.
Dean, Z. Schwartz, “Response of MG63 osteoblast-like cells to titanium and
titanium alloy is dependent on surface roughness and composition”, Biomaterials,
19, 2219-32 (1998)
同註42
Georgi Altankov, Frederick Grinnell, Thomas Growth, “Studies on the
biocompatibility of materials: Fibroblast reorganization of substratum-bound
fibronectin on surfaces varying in wettability”, J. Biomed. Mater. Res, 30, 385-91,
(1996)
J.B. Park, “Biomaterials Science and Engineering”, Plenum Press, New York (1984)
H.M. Spotnitz, “Circulatory assist devices”, in Handbook of Bioengineering,
McGraw-Hill, New York, 38.1-11
G. K. Mckee, “Total hip replacement-past present and future” ,Biomaterials, Vol. 13
(1982)
Sujata V. Bhat, “Biomaterial”, Second edition, 4(2005)
同註70
http://www.twocw.net/mit/ 麻省理工學院「開放式課程網頁」,上網日期:2006/03/14
http://www.twocw.net/mit/ 麻省理工學院「開放式課程網頁」,上網日期:2006/03/14
http://www.giichinese.com.cn/chinese/bc24076_orthopedic_drugs_toc.html Global Information, 上網日期:2006/03/14
D.F. Williams, in: D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen (Eds.),
“Titanium in Medicine”, Springer, Berlin, 2001, 13–24.
同註75
http://www.jointcure.com/pages/ceramichip.php Joint Cure Enterprises, 上網日期:2006/03/16
http://www.doc4bones.com/joint_replacement.shtml Orthopaedic and Arthritis Surgery Center, 上網日期:2006/3/16
同註43
同註44
同註45
同註46
同註47
同註48
同註49
同註50
同註51
同註52
http://www.hk.edu.tw/~mehu/Tortora/Chap05%20Bone%20tissue.htm bone tissue, 上網日期:2006/4/22
同註88
同註54
Baek-Hee Lee, Young Do Kim, Ji Hoon Shin, Kyu Hwan Lee, “Surface modification by alkali and heat treatments in titanium alloys”, J. Biomed. Mater.Res,61, 466-73 (2002)
Norman E. Dowling, “Mechanical behavior of materials-Engineering methods for
deformation, fracture and fatigue”, second edition.
同註54
同註46
Rajarman R, Rounds DE, Yen SPS, Rembaum A, “A scanning electron microscope
study of cell adhension and spreading in vitro”, Exptl. Cell Res, 88, 529-34, (2000)
Curtis ASG, Clark P, “The effect of topographic and mechanical properties of
materials on cell behaviour”, Crit Rev Biocomp, 5, 343-62 (1990)
Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW, “Cell guidance by
ultrafine topography in vitro”, J. Biomed. Biomater. Res, 99, 73-77 (1991)
E. Eisenbarth, J. Meyle, W. Nachtigall, J. Breme, “Influence of the surface structure
of titanium materials on the adhension of fibroblasts”, Biomaterials, 17, 1399-1403
(1996)
Yunzhi Yang, Jiemo Tian, Li Deng, Joo L. Ong, “Morphological behavior of
osteoblast-like cells on surface-modified titanium in vitro”, Biomaterials, 23,
1383-89 (2002)
S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomu, Z.X. Guo, “Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for biomedical applications”, WEAR, 257, 869-76 (2004)
Eisenbarth E, Meyle J, Nachtigall, W. Breme, “Influence of surface structure of
titanium materials on the adhesion of fibroblasts”, Biomaterials, 17, 1399-403
(1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top