跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳仕瀚
研究生(外文):Shi-Han Chen
論文名稱:汽車煞車碟盤轉折處與支撐處尺寸對熱效應之分析
論文名稱(外文):Effect of dimensions of the hat and the slot in a vehicle brake disc on the thermal performance
指導教授:黃元茂
指導教授(外文):Yuan-Mao Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:煞車碟盤熱效應
外文關鍵詞:brakediscthermal performance
相關次數:
  • 被引用被引用:7
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分析當汽車碟式煞車改變碟盤支撐處厚度與轉折處溝槽之半徑深度時,所產生之熱效應;碟盤溫度分布、變形與應力之影響。利用煞車碟盤摩擦生成熱量之方程式與動能轉換產生熱能之方程式,建立三度空間有限元素碟盤模型,模擬真實摩擦狀態時接觸面所產生熱的情況,再以此計算所得之熱,與其他的輸入邊界條件於有限元素模型,以研究煞車之碟盤與蹄塊因作用時產生之熱對其應力、變形與應變之影響。用支撐處厚度與溝槽半徑或深度相關之支撐處高度,對碟盤外徑至支撐處內側之尺寸作無因次化,由結果可知,若厚度增加1 %,溫度上可降低0.04 %,變形量可減少0.01 %。當溝槽半徑或深度上增加1 %,溫度上可降低0.5 %,變形量上可減少0.29 %。增大轉折處溝槽半徑或深度,降低溫度與變形量比改變支撐處尺寸之效益大,而增大溝槽半徑為6 mm之碟盤的溫度較原型可降低約攝氏30度,變形量上可減少0.086 mm,偏轉角可減少37.5 %,最大周向應力減少7.1 MPa。
This study analyzes the thermal effects of a vehicle brake disc with various thicknesses of the hat and depths of the slot. Convective heat transfer coefficients of brake disc surfaces are calculated, and thermal effects during the brake operation are simulated by using a three-dimensional finite element model. Effects of design parameters including dimensions and boundary conditions on the temperature, deformation and stress distribution of the brake disc are investigated. The effect of the slot depth on the deformation of the brake is more significant than that of the hat thickness. With the length from the inner radius of the hat to the outer radius of the disc as the base, non-dimensional temperature decreased are presented for changing the thickness of the hat and depth of the slot. Increasing 1 % of the hat thickness lowers 0.04 % of the temperature and 0.01 % of the deformation. Increasing 1 % of the slot depth decreases 0.5 % of the temperature and 0.29 % of the deformation that. Increasing the slot depth to 6 mm decreases the maximum temperature of the disc about 30 , the deformation about 0.086 mm, the coning angle about 37.5 %, and the hoop stress about 7.1 MPa lower than these of the original disc and the disc with various thicknesses in the supporting portion.
中文摘要 i
英文摘要 ii
目錄 iii
符號表 v

第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究目的 8
1.4 研究方法 9
1.5 本文架構 9

第二章 理論分析 11
2.1 前言 11
2.2 溫度分析 13
2.3 熱應力與應變分析 21

第三章 有限元素模型分析 25
3.1 前言 25
3.2 基本設定與初始條件 27
3.3 邊界條件 27
3.4 材料性質與基本尺寸 37

第四章 結果分析 38
4.1 前言 38
4.2 模型種類 38
4.3 時間歷程 43
4.4 溫度部分 43
4.5 變形部分 50
4.6 變形所產生之錐角 54
4.7 應力部分 55

第五章 結果討論 61
5.1 模型建構討論 61
5.2 邊界條件討論 62
5.3 溫度討論 64
5.4 變形討論 66
5.5 應力討論 69

第六章 結論與建議 70
6.1 結論 70
6.2 研究方法的缺失與建議 71

參考文獻 73

附錄 套裝軟體理論簡介 A1
[1] Mote, C. D., 1967, “Natural Frequencies in Annuli with Induced Thermal Membrane Stresses,” ASME, Journal of Engineering Industry, pp. 611-618.
[2] Kirkhpoe, L., and Wilson, G. J., 1972, “Vibration of Circular and Annular Plates Using Finite Elements,” International Journal for Numerical Methods in Engineering, 4, pp. 181-193.
[3] Hintion, E., 1976, “The Dynamic Transient Analysis of Axisymmetric Circular Plates by the Finite Element Method,” ASME, Journal of Sound and Vibration, 46, pp. 465-472.
[4] Raju, K. K., and Rao, G. V., 1976, “Axisymmetric Vibrations of Circular Plates Including the Effects of Geometric non-linearity, Shear Deformation and Rotary Inertia,” ASME, Journal of Sound and Vibration, 47, pp. 179-184.
[5] Kirkhope, L., and Wilson, G. J., 1976, “Vibration Analysis of Axial Flow Turbine Disks Using Finite Elements,” ASME Journal of Engineering for industry, 98, pp. 1008-1013.
[6] Soares, C. A. M., and Petyt, M., 1978, “Finite Element Dynamic Analysis of Parctical Discs,” ASME, Journal of Sound and Vibration, 61, pp. 547-560.
[7] Mote, C. D., and Angelo III, C. D., 1993, “Natural Frequency of Thin Disk Clamped by Thick Collars with Friction at the Contacting Surface Spinning at High Rotation Speed,” ASME, Journal of Sound and Vibration, 168, n 1, pp. 1-14.
[8] Tamasho, K., Doi, K., Hamabe, T., Koshimizu, N., and Suzuki, S., 1999, “Technique for Reducing Brake Drag Torque in the Non-braking Mode,” JSAE Review, 21, pp. 67-72.
[9] Sinon, J. J., Thouverez, F., and Jezequel, L., 2002, “Analysis of Friction and Instability by the Centre Manifold Theory for a Non-linear Sprag-slip Model,” Journal of Sound and Vibration, 265, pp. 527-559.
[10] Kinkaid, N., M., O’Reilly, O. M., and Papadopoulos, P., 2003, “Automotive Disc Brake Squeal,” Journal of Sound and Vibration, 267, n 1, pp. 105-166.
[11] Paliwal, M., Mahajan, A., Don, J., Chu, T., and Filip, P., 2005, “Noise and Vibration Analysis of a Disc–brake System Using a Stick–slip Friction Model Involving Coupling Stiffness,” Journal of Sound and Vibration, 282, n 3-5, pp. 1273-1284.
[12] Kinkaid, N. M., O’Reilly, O. M., and Papadopoulos, P., 2005, “On the Transient Dynamics of a Multi-degree-of-freedom Friction Oscillator: a New Mechanism for Disc Brake Noise,” Journal of Sound and Vibration, 287, n 4-5, pp. 901-917.
[13] Yoshio, J., Takahiro, M., Kouichi, A., Hiromichi, M., Manabu, Y., and Akihiko, O., 1990, “Development of High Thermal Conductivity Cast Iron for Brake Disk Rotors,” SAE Special Publications, ABS Traction Control and Brake, Components, n 815, 900002, pp. 22-28.
[14] Zagrodzki, P., 1991, “Influence of Design and Material Factors on Thermal Stresses in Multiple Disc Wet Clutches and Brakes,” Small Engine Technology Conference Proceedings, pp. 173-179.
[15] Aleksandrov, M. P., and Nosko, A. L., 1991, “Design for Heat in Braking Systems with Small Angle of Mutual Overlapping (Exemplified by Disc-Pad Brakes of Materials Handling Machines),” Sumitomo Metals, 45, n 6, pp. 23-32.
[16] Grieve, D. G., Barton, D. C., Crolla, D. A., and Buckingham, J. T., 1998, “Design of a Lightweight Automotive Brake Disc Using Finite Element and Taguchi Techniques,” Journal of Automobile Engineering, 212, n 4, pp. 245-254.
[17] Abd-Rabou, M, 1999, “Towards the Minimization of Braking Surface Temperature,” Journal of Engineering and Applied Science, 46, n 6, pp. 1075-1088.
[18] Lu, Y., 2005, “A Combinatorial Approach for Automotive Friction Materials: Effects of Ingredients on Friction Performance,” Composites Science and Technology, 66, n 3-4, pp. 591-598.
[19] Hee, K., W., and Filip, P., 2005, “Performance of Ceramic Enhanced Phenolic Matrix Brake Lining Materials for Automotive Brake Linings,” Wear, 259, n 7-12, pp. 1088-1096.
[20] Sahin, Y., 2006, “Optimal Testing Parameters on the Wear Behavior of Various Steels,” Materials and Design, 27, n 6, pp. 455-460.
[21] Tirovic, M., and Day, A.J., 1991, “Disc Brake Interface Pressure Distributions,” SAE Transactions, 99, n Sect 2, pp. 653-660.
[22] Benseddiq, N., Weichert, D., Seidermann J. and Minet, M., 1996, “Optimization of Design of Railway Disc Brake Pads,” Journal of Rail and Rapid Transit, 210, n 1, pp. 51-61.
[23] Kao, T. K., Richmond, J. W., and Douarre, A., 2000, “Brake Disc Hot Spotting and Thermal Judder: an Experimental and Finite Element Study,” International Journal of Vehicle Design, 23, n 3, pp. 276-296.
[24] Jacobsson, H., 2001, “Brake Judder,” Machine and Vehicle Systems, Chalmers University of Technology, Göteborg, Sweden. 2001-10-18.
[25] Dufrenoy, P., and Weichert, D., 2003, “Two-/three-dimensional Hybrid Model of the Thermomechanical Behaviour of Disc Brakes,” Journal of Mechanical Engineering Science. Proc. Instn Mech. Engrs, Part F, 218, pp. 17-30.
[26] Pinto da Costa, A., Martins, J., A., C., Figueiredo, I., N., and Judice, J., J., 2004, “The Directional Instability Problem in Systems with Frictional Contacts,” Computer Methods in Applied Mechanics and Engineering, 193, n 3-5, pp. 357-384.
[27] Kubota, M., Hamabe, T., Nakazono, Y., Fukuda, M., and Doi, K., 2000, “Development of a Lightweight Brake Disc Rotor: a Design Approach for Achieving an Optimum Thermal, Vibration and Weight Balance,” JSAE Review, 21, pp. 349-355.
[28] 1976, Engineering design handbook – Analysis and design of automotive brake systems, provide for China Motor Corporation。
[29] Valvano, T., and Lee, K., 2000, “An Analytical Method to Predict Thermal Distortion of a Brake Rotor,” SAE paper number 2000-01-0445.
[30] Mills, A. F., 1999, Heat Transfer, 2nd edition, Prentice Hall, Inc., pp. 362-365.
[31] Data provided by China Motor Co.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 〈陸機〈文賦〉所代表的文學觀念〉王夢鷗 《中外文學》8卷2期 1979
2. 〈以光明對抗黑暗:〈文賦〉英譯敘文〉陳世驤著,吳潛誠譯 《中外文學》80卷8期 1990
3. 〈兩漢儒士的仕隱態度與社會風氣〉洪安全 《孔孟學報》第42期 1981﹙民70﹚,9
4. 〈歸返、夢幻、焦慮:從陶、柳辭賦論歸田書寫的文類流變及其創作意蘊〉許東海 《漢學研究》第22卷第1期 2004﹙民93﹚,6月
5. 〈潘岳〈閒居賦〉與謝靈運〈山居賦〉之比較〉許恬怡 《輔大中研所學刊》第14期 2004﹙民93﹚,9月
6. 〈「達」的多重樣態──魏晉士人對「無待」的渴慕與糾纏〉林聰舜 成功大學《六朝學刊第一期》 2004﹙民93﹚,12月
7. 〈宋代辭賦辨體論〉詹杭倫 《逢甲人文社會學報》第7期 2003,11月
8. 〈古典辭賦的主題與技巧〉廖國棟 《國文天地.18卷9期》 2003﹙民92﹚,2月
9. 〈清人選唐律賦之考察〉簡宗梧、游適宏 《逢甲人文社會學報》第5期 2002,11月
10. 〈論北宋理趣賦的意境〉顧柔利《國文天地15卷2期》170期 1999﹙民88﹚,7月
11. 〈生鏽的文學主環—賦〉簡宗梧 《國文天地14卷06期》162期 1998﹙民87﹚,11月
12. 〈謝靈運山水詩的創作背景及其作品中的色彩美〉陳怡良 《成大中文學報》第5期 1997﹙民86﹚,5月
13. 〈謝靈運〈山居賦〉析論〉陳文生 《輔大中研所學刊》第6期 1996﹙民85﹚,6月
14. 〈明代江門心學的崛起與式微〉潘振泰 《新史學》第七卷第2期 1996,2月
15. 〈論道教生命哲學〉李剛著 《道教學探索》第九期 1995﹙民84﹚,12月