跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:章耀宗
研究生(外文):Yao-Chung,Chang
論文名稱:高溫裂解碳源應用於奈米碳管成長
論文名稱(外文):Application of overheated carbon source for the synthesis of carbon nanotube
指導教授:張所鋐
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:96
中文關鍵詞:奈米碳管化學氣相沉積法
外文關鍵詞:carbon nanotubeCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:1
本文為過熱碳原料應用於奈米碳管成長之研究。因為奈米碳管具有優良的機械性質,其應用層面非常廣泛。奈米碳管能與傳統微機電製程所製作的微結構整合,預期能夠得到新款式的奈米尺度裝置。奈米碳管具有高度學術研究價值,引起許多學者專家的研究興趣。因此,奈米碳管被視為是未來高科技產業中最具潛力的材料。
實驗方法主要利用化學氣相沉積法於置備均勻催化劑的試片表面生長奈米碳管,儀器設備是利用三段式的高溫爐並設定不同的溫度參數。一般來說,成長奈米碳管所需的催化劑來源可以利用電子束蒸鍍機,於試片基材上蒸鍍金屬或非金屬薄膜。鐵、鈷、鎳是常用的金屬薄膜催化劑。另一種常用催化劑是滴鐵蛋白試劑於試片,然後送入高溫爐生長碳管。利用金屬薄膜成長的奈米碳管大多數是多壁碳管,若金屬厚度越薄則越有機會成長出單壁碳管。鐵蛋白催化劑顆粒尺寸僅僅數奈米,有利於單壁碳管的生長。只要反應氣體參數控制得宜,成長出的碳管大多數會是單壁奈米碳管。因此,本文中將以鐵蛋白顆粒作為成長碳管的催化劑來源。
實驗中將著重於反應氣體參數的控制,以期能在較低的溫度生長出單壁奈米碳管。過程中調配了幾種濃度不同的催化劑,除了比較在不同溫度下單位面積的碳管數量,更加以觀察其成長現象。三段式高溫爐的溫度設定依序為950℃、850℃、750℃,然後藉由反應氣體流量適當的改變,順利在750℃生長出單壁奈米碳管。最終,嘗試在更低的成長溫度700℃,亦順利生長出單壁奈米碳管,並將所有碳管成長結果加以歸納整理。希望本論文能夠為未來研究低溫成長碳管的學者提供些許參考價值。
In this paper, we research overheated carbon source application for carbon nanotube growth. The application of carbon nanotube was broadly involved because of its remarkable mechanic properties. Carbon nanotube might be integrated with micro-scale structure of conventional MEMS fabrication, expected to obtain new types of nano-scale device. Carbon nanotube is provided with high worth of science academic research, and is attracting lots of savant’s great research interest. Hence, carbon nanotube is generally acknowledged as the most potential material for the future high technology industry.
Experiment method of carbon nanotube growth would be chemical vapor deposition (CVD) on catalytically patterned substrate surfaces, equipment would be 3-stage furnace in different temperature parameter. Generally speaking, the catalyst source for carbon nanotube growth could be evaporated metallic or nonmetallic thin film on the substrate by means of E-beam evaporator. Iron、cobalt、nickel are the metal thin film catalyst in common use. Another method in common use would be dropped ferritin reagent as catalyst on the substrate, and move in the furnace for nanotube growth. Utilizing metal thin film for carbon nanotube growth would be multi-walled in majority. The thinner metal thin film is, the more chance to obtain single-walled carbon nanotube. Ferritin catalyst particle scale is only several nanometers, which is advantageous for single-walled carbon nanotube growth. Carbon nanotubes would be single-walled as long as the reaction gas parameter was controlled appropriately. Consequently, ferritin particle would be the catalyst source in this paper.
We will emphasize the control of the reaction gas parameter in the experiment, and expect to grow single-walled carbon nanotube in lower temperature. We synthesize catalyst in different concentration, not only to compare with the numbers of carbon nanotube per unit area in different temperature, but also to observe the grow phenomenon. Temperature setup was 950℃、850℃、750℃ in order, and we obtain single-walled carbon nanotube in 750℃ successfully in the appropriate control of the reaction gas flow rate. Finally, we obtain single-walled carbon nanotube in lower temperature 700℃. We hope the research would provide worthy reference and be helpful for the following academician.
中文摘要…………III
英文摘要………....IV
目錄……….VI
圖目錄…………VIII
表目錄..………..XII
第壹章 緒論
1-1 前言….....1
1-2 研究動機與目標…….4
第貳章 文獻回顧
2-1 奈米碳管..………….5
2-2 奈米碳管成長機制………….8
2-2.1 電弧放電法(Arc-discharge method).……....8
2-2.2 雷射剝離法(Laser ablation method)..….…..9
2-2.3 化學氣相沉積法(Chemical vapor deposition method)..…10
2-3 化學氣相沉積法成長奈米碳管之文獻歸納分析…….12
2-3.1 利用奈米顆粒催化劑成長奈米碳管………..12
2-3.2 成長平行對準的奈米碳管……………..20
2-3.3 利用金屬薄膜成長奈米碳管…………..22
2-3.4 氧化層膜厚對於成長奈米碳管的影響………..24
第參章 實驗設備與架構
3-1 實驗材料準備……………….27
3-1.1 試片準備…………..27
3-1.2 催化劑置備…………..29
3-2 實驗設備……………….33
3-2.1 流速溫度控制器………..33
3-2.2 高溫爐…………………..35
3-2.3 原子力顯微鏡(Atomic Force Microscope).………….36
3-2.4 穿透式電子顯微鏡(TEM)………………44
3-3 實驗架構…………………..49
第肆章 實驗結果與歸納分析
4-1 實驗過程步驟………….53
4-2 實驗結果……………….55
4-2.1 實驗一至實驗六…...55
4-2.2 實驗七至實驗十二……...77
4-3 歸納分析………..86
4-3.1 工作溫度950℃時反應氣體流量比例對於奈米碳管產量之影響……86
4-3.2 工作溫度850℃時反應氣體流量比例對於奈米碳管產量之影響……92
4-3.3 低溫製程奈米碳管成長結果……...95
第伍章 結論建議與未來展望
5-1 實驗結論………….101
5-2 討論建議……….103
5-3 未來展望………….107
參考文獻………….....108
[1] Sumio Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56, (1991)
[2] Ebbesen TW, Ajayan PM., Nature, 358, 220, (1992)
[3] Sumio Iijima, Ichihashi T., Nature, 363, 603, (1993)
[4] Bethune DS, Kiang CH, Devries MS., Nature, 363, 605(1993)
[5] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, O. Tabata, “Carbon nanotubes and sensors : Review,” Advanced micro and nanosystems, Vol. 1, 357~382, (2004)
[6] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, “Science of Fullerenes and Carbon Nanotubes,” Academic Press, (1995)
[7] Dresselhaus, M.S.; Dresselhaus, G..; Eklund, P.C., “Fullerenes and carbon nanotube,” Academic, San Diego, (1996)
[8] Yoshinori Ando, Xinluo Zhao, Toshiki Sugai, and Mukul Kumar, “Carbon Nanotube – Rview,” Materials today1369 7021, pp.23~29, Oct., (2004)
[9] Goo-Hwan Jeong, “Behavior of catalytic nanoparticles during chemical vapor deposition for carbon nanotube growth,” Chemical Physics Letters Vol. 422, NO. 1-3, pp.83-88, April 28, (2006)
[10] Matthieu Paillet, “Growth and physical properties of individual single-walled carbon nanotubes,” Diamond & Related Materials Vol. 14, 1426-1431, (2005)
[11] Husna Emrah Unalan, “Investigation of single-walled carbon nanotube growth parameter using alcohol catalyst chemical vapor deposition,” Nanotechnology Vol..16, 2153-2163, (2005)
[12] Goo-Hwan Jeong, Satoru Suzuki, “Effect of nanoparticle density on narrow diameter distribution of carbon nanotubes and particle evolution during chemical vapor deposition growth,” Journal of Applied Physics 98. 124311, (2005)
[13] Hiroki Ago et al , “Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface,” Chemical Physics Letters Vol. 408, 433-438,(2005)
[14] Goichi Takeda, Lujun Pan, “Vertically aligned carbon nanotube grown at low temperature for use in displays,” Journal of Applied Physics Vol. 44, No. 7B, pp. 5642-5645, (2005)
[15] Anyuan Cao, “Silicon oxide thickness-dependent growth of carbon nanotubes,” Applied Physics Letters Vol. 84, No. 1, pp. 109-111, (2004)
[16] Binnig G.., Quate C. F., and Gerber C. H., “Atomic force microscope,”Physics Review Letter, 56, pp.930-941,(1986)
[17] Hamidi A., Hu S., Altmeyer S., K¨oster T., Spangenberg B. and Kurt H. J. Vac. Sci. Technol. B 16 2822, (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top