Ataide, C.H., Pereira, F.A.R. and Barrozo, M.A.S. (1999), ‘Wall effects on the terminal velocity of spherical particles in Newtonian and non-Newtonian fluids’, Braz. J. Chem. Eng., Vol.16, pp.1-12.
Bagchi, P. and Balachandar, S. (2002), ‘Steady planar straining flow past a sphere at moderate Reynolds number’, J. Fluid Mech., Vol.466, pp.365-407.
Brown, P.P. and Lawler, D.F. (2003), ‘Sphere drag and settling velocity revised’, J. Environ. Eng-ASCE., Vol.129, pp.222-231.
Chen, Y.N., Yang, S.C. and Yang, J.Y. (1999), ‘Implicit weighted essentially non-oscillatory schemes for the incompressible Navier-Stokes equations’, Int. J. Numer. Meth. Fluids, Vol.31, pp.747-765.
Chorin, A.J. (1967), ‘A numerical method for solving incompre- ssible viscous flow problems ’, J. Comput. Phys., Vol.2, pp.12-26.
Chang, J.L.C., Kwak, D., Rogers, S.E. and Yang, R.J. (1988), ‘Numerical solution methods of incompressible flows and an application to the space shuttle main engine’, Int. J. Numer. Meth. Fluids, Vol.8, pp.1241-1268.
Cliffe, K.A., Garratt, T.J. and Spence, A. (1993), ‘Eigenvalues of the discretized Navier-Stokes equations with application to the detection of Hopf bifurcations’, Adv. Comput. Math. Vol.1, pp.337-356.
Cliffe, K.A., Spence, A. and Tavener, S.J. (2000), ‘O(2)-symmetry breaking bifurcation: with application to the flow past a sphere in a pipe ’, Int. J. Numer. Meth. Fluids, Vol.32, pp.175-200.
Clift, R., Grace, J.R., and Weber, M.E. (1978), ‘Bubbles, drops, and particles’, Academic, New York.
Dennis, S.C.R. and Walker, J.D.A. (1971), ‘Calculation of the steady flow past a sphere at low and moderate Reynolds numbers’, J. Fluid Mech., Vol.48, pp.771-789.
Flemmer, R.L.C. and Banks, C.L. (1986), ‘On the drag coefficient of a sphere’, Powder Technol., Vol.48, pp.217-225.
Fornberg, B. (1988), ‘Steady viscous flow past a sphere at high Reynolds numbers’, J. Fluid Mech., Vol.190, pp.471-489.
Fox, R.W. and Macdonald, A.T. (1998), ‘Introduction to fluid mechanics’, fifth edition, pp.450.
Ghidersa, B. and Dusek, J. (2000), ‘Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere’, J. Fluid Mech., Vol.423, pp.33-69.
Goldburg, A. and Florsheim, B.H. (1966), ‘Transition and Strouhal number for the incompressible wake of various bodies’, Phys. Fluids, Vol.9, pp.45-50.
Harten, A. (1983), ‘High resolution schemes for hyperbolic conservation laws’, J.Comput. Phys., Vol.49, pp.357-393.
Hundsdorfer W. and Verwer, J.G. (2003), Numerical Solution of Time Dependent Advection Diffusion Reaction Equations, Springer Ser. Comput. Math. 33, Springer-Verlag, Berlin.
Johnson, T.A. and Patel, V.C. (1999), ‘Flow past a sphere up to a Reynolds number of 300’, J. Fluid Mech., Vol.378, pp.19-71.
Johansson, H. (1974), ‘A numerical solution of the flow around a sphere in a circular cylinder’, Chem. Eng. Commun., Vol.1, pp.271-280.
Kiya, M., Ishikawa, H. and Sakamoto, H. (2001), ‘Near-wake instabilities and vortex structures of three-dimensional bodies: a review’, J. wind eng. ind. Aerody., Vol.89, pp.1219-1232.
Laney, C.B. (1998), Computational Gasdynamics, Cambridge University Press, Cambridge, UK.
Lehoucq, R.B., Sorensen, D.C. and Yang, C. (1998), ARPACK USERS’ GUIDE:Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.
LeVeque, R.J. (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK.
Margarvey, R.H. and Bishop, R.L. (1961), ‘Transition ranges for three- dimensional wakes’, Can. J. Phys., Vol.39, pp.1418-1422.
Magarvey, R.H. and Maclatchy, C.S. (1965), ‘Vortices in sphere wakes’, Canadian J. Phys., Vol.43, pp.1649-1656.
Magnaudet, J., Rivero, M. and Fabre, J. (1995), ‘Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow’, J. Fluid Mech., Vol.284, pp.97-135.
Mittal, R. (1999), ‘A Fourier Chebyshev spectral collocation method for simulation flow past spheresand spheroids’, Intl. J. Numer. Meths. Fluids, Vol.30, pp.921-937.
Modi, V.J. and Akutsu, T. (1984), ‘Wall confinement effects for spheres in the Reynolds number range of 30-2000’, J. fluids eng., Vol.106, pp.66-73.
Nakamura, I. (1976), ‘Steady wake behind a sphere’, Phys. Fluids, Vol.19, pp.5-8.
Natarajan, R. and Acrivos, A. (1993), ‘The instability of the steady flow past spheres and disks’, J. Fluid Mech., Vol.254, pp.323-344.
Oh, J.H. and Lee, S.J. (1988), ‘A study on the Newtonian fluid flow past a sphere in a tube’, Korean J. Chem. Eng., Vol.5, pp.190-196.
Pruppacher, H.R., Le Clair, B.P. and Hamiliec, A.E. (1970), ‘Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers’, J. Fluid Mech., Vol.44, pp.781-796.
Rivkind, V.Y., Ryskin, G.M. and Fishbein, G.A. (1976), ‘Flow around a spherical drop at intermediate Reynolds numbers’, Appl. Math. Mech., Vol.40, pp.687-691.
Roe, P.L. (1981), ‘Approximate riemann solvers, parameter vectors, and difference schemes’, J. comput. Phys., Vol.43, pp.357-372.
Roe, P.L. (1986), ‘Characteristic-based upwind scheme for the Euler equations’, Annu. Rev. Fluid Mech., Vol.18, pp.337-365.
Sorensen, D.C. (1992), ‘Implicit application of polynomial filters in a k-step Arnoldi method’, SIAM. J. Matrix. Anal., Vol.13, pp.357-385.
Taneda, S. (1956), ‘Experimental investigation of the wake behind a sphere at low Reynolds numbers’, J. Phys. Soc. Japan, Vol.11, pp.1104-1108.
Tavener, S.J. (1994), ‘Stability of the O(2)-symmetric flow past a sphere in a pipe’, Phys. Fluids A., Vol.6, pp.3884-3892.
Thompson, M.C., Leweke, T. and Provansal, M. (2001), ‘Kinematics and dynamics of sphere wake transition’, J. Fluids Struct., Vol.15, pp.575-585.
Tomboulides, A.G., Orszag, S.A. and Karniadakis, G.E. (1993), ‘Direct and large-eddy simulations of axisymmetric wakes’, AIAA-93-0546.
Tomboulides, A.G. and Orszag, S.A. (2000), ‘Numerical investigation of transitional and weak turbulent flow past a sphere’, J. Fluid Mech., Vol.416, pp.45-73.
Toro, E.F. (1999), Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.
Turton, R. and Levenspiel, O. (1986), ‘A short note on the drag correlation for spheres’, Powder Technol., Vol.47, pp.83-86.
Van Leer, B. (1979), ‘Towards the ultimate conservative difference scheme V, a second order sequel to Godunov’s method’, J. comput. Phys., Vol.32, pp.234-245.
Werner, B. and Spence, A. (1984), ‘The computation of symmetric breaking bifurcation points’, SIAM J. Numer. Anal., Vol.21, pp.388-399.
Wham, R.M., Basaran, O.A. and Byers, C.H. (1997), ‘Wall effects on flow past solid spheres at finite Reynolds number’, Chem. Eng. Sci., Vol.19, pp.3345-3367.
Wu, J.S. and Faeth, G.M. (1993), ‘Sphere wakes in still surroundings at intermediate Reynolds numbers’, AIAA J., Vol.31, pp.1448-1455.
Yang, J.Y., Yang, S.C., Chen, Y.N. and Hsu, C.A. (1998), ‘Implicit weighted ENO schemes for the three-dimensional incompressible Navier-Stokes equations’, J. comput. Phys, Vol.146, pp.464-487.
Yoon, S. and Jameson, A. (1987), ‘An LU-SSOR scheme for the Euler and Navier-Stokes equations’, AIAA-87-0600.
Yoon, S. and Jameson, A. (1988), ‘A lower-upper symmetric Gauss Seidel method for the Euler and Navier Stokes equations’, AIAA J. Vol.26 pp.1025-1026.
馮建忠 (2000), ‘脈衝流於非等截徑彈性管(動脈血管)中之流場模擬’,國立台灣大學機械工程研究所博士論文