跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王瀅惠
研究生(外文):Ying-Hui Wang
論文名稱:單一細胞操控、培養與即時觀測之研究
論文名稱(外文):A Study of Single cell Manipulation, Culturing, and Real-time Investigation
指導教授:黃榮山
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:單一細胞即時觀測
外文關鍵詞:Single cellreal-time investigation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞為生命之最小單位,個體的特殊性皆來自細胞的影響。幹細胞為身體各組織的原始細胞,擁有分化為其他不同細胞的能力,究竟是何種反應發號施令仍舊是個謎題,若能對單一幹細胞進行研究觀察,將有助於了解其中奧秘,因而科學家推動了單一細胞的研究。微機電系統技術可製作多種與生物分子尺寸相符的微小元件,有助於操控單一細胞,故結合微機電技術與生物醫學將利於單一細胞之研究。
本研究目的於建立一套單一細胞操控、培養與觀測之系統,研究方法可分為細胞分離與運送、培養與觀測分析。在細胞分離與運送方面,透過微機電製程輔助,對單一細胞進行操控。在細胞培養上,使用微型細胞培養室,將細胞培養於微量井晶片上,此晶片主要為提供單一細胞獨立成長環境,並利用晶片上的結構可對細胞進行培養液之替換或注入不同化學物質以刺激細胞,觀察細胞成長反應之現象。觀測系統則以全反射式螢光顯微鏡與CytovivaTM150等之顯微系統為主,即時觀測取得生物影像,並透過電腦軟體進行影像分析。
整合以上技術後,即需要生物知識來協助實驗研究,以正確解讀生物訊息,如細胞形變、蛋白質之運作等,進一步對單一細胞研究作更深入的探討。
Cell is the smallest, biologically functional system unit in lives, and every feature in organisms is constituted by cells. The most original cells in humans are stem cells which possess the remarkable potential to be developed into various cell types in body. The mechanism remains unknown such that a study of single stem cell is becoming a highly potential approach to unveil its activities. By taking the advantages in MEMS technique of comparable size to a cell, the manufacturing, manipulation and investigation for a single cell have been made in this work.
The objective of the study is to develop a microsystem of single cell for manipulation, culturing, and real-time investigation. In manipulation for a single cell, a micro-pipette and micro-well device has been micromanufactured in order for isolation and transportation of a single cell. In cell culturing, a single cell is trapped and cultivated within a micro-well chip inside the micro-incubation culture system. The chip provides an isolated environment for a single cell in which the device is allowed to be injected with chemicals and biomarkers to stimulate the single cell. Moreover, in cell observation, the real-time investigation has been made simultaneously by both the total internal reflection fluorescence microscopy and CytovivaTM150. The images can be obtained and analyzed with the image processing software such that a great deal of bio-information for a single cell can be achieved. With such a system, the single cell morphology and protein-protein interaction can then be potentially realized. The well-integarted cell microsystem has been made for potential study for a single stem cell or its associated interaction, differentiation and communication to specific cells.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
第1章 緒論 1
1-1前言 1
1-2研究動機 2
1-3文獻探討 4
1-3-1 細胞實驗室(The lab in a cell) 4
1-3-2 單一細胞操控 6
1-3-3微小化全自動分析系統(Micro total analysis system, μ-TAS) 15
1-4研究方法 17
1-5論文架構 18
第2章 實驗原理 19
2-1 單一細胞操控 19
2-2 全反射式螢光顯微鏡之原理與架設 20
2-2-1 全反射現象之原理 21
2-2-2 漸逝波 22
2-2-3 光場架設之種類 24
2-2-4 螢光物質 26
2-3 CytovivaTM150之原理與架設 31
2-3-1 光學原理 31
2-3-2 解析度之增強 34
2-3-3 光學架設 36
第3章 實驗步驟 38
3-1 微量滴管與微量井之製作 38
3-1-1 晶片設計 39
3-1-2晶片製程 43
3-1-3 晶片整合 52
3-2 全反射式螢光顯微鏡之光場架設與校準 54
3-3 CytovivaTM150之改裝於倒立式顯微鏡與校準 58
3-4 細胞培養環境與系統架設 60
3-5 系統整合與流程 64
第4章 實驗結果與討論 69
4-1 細胞種類與前處理 69
4-2 群體細胞之培養與觀測 70
4-2-1 全反射式螢光顯微鏡於細胞觀測之優點 77
4-2-2 CytovivaTM150於細胞觀測之優點 78
4-3 單一細胞操控 79
4-3-1 單一細胞分離 79
4-3-3 單一細胞運送與固定 83
4-4 單一細胞培養與觀察 86
第5章 結論與未來展望 94
5-1結論 94
5-2未來展望 95
參考文獻 97
[1]V. Chin, S. Sanga, P. Taupin, J. Scheel, F.H. Gage, and S.N. Bhatia, “Microfabricated Platform for Studying Stem Cell Fates,” Biotechnology and Bioengineering, vol.88, no.3, pp. 399-415, 2004.
[2]A. Khademhosseini, J. Yeh, S.Y. Jon, G. Eng, K.Y. Suh, J. Burdick, and R. Langer, “Molded Polyethylene Glycol Microstructures for Capturing Cells within Microfluidic Channels,” Lab on a chip, vol.4, pp. 425-430, 2004.
[3]H. Andersson and A. van den Berg, “Microtechnologies and Nanotechnologies for Single-Cell Analysis,” Current Opinion in Biotechnology, vol.15, no.1, pp. 44-49, 2004.
[4]H. Lee, A.M. Purdon, and R.M. Westervelt, “Micromanipulation of Biological Systems with Microelectromagnets,” IEEE Transactions on Magnetics, vol.40, no.4, pp. 2991-2993, 2004.
[5]H. Inokuchi, Y. Suzuki, N. Kasagi, N. Shikazono, K. Furukawa, and T. Ushida, “Micro Magnetic Separator for Stem Cell Sorting System,” in Proceedings of the 22nd sensor symposium, Tokyo, Oct., pp. 125-128, 2005.
[6]http://www.major.com.twp_1_2_cm_ASTP.htm
[7]S. Shikano, K. Horio, and Y. Ohtsuka, “Separation of a Single Cell by Red-Laser Manipulation.” Applied Physics Letters, vol.75, pp.2671-2673, 1999.
[8]F. Arai, A. Ichikawa, H. Maruyama, K. Motoo, and T. Fukuda, “Manipulation of Single Cell for Separation and Investigation,” International Journal of Control, Automation, and Systems, vol.2, no.2, pp. 135-143, 2004.
[9]L. Lilge, N. Munceb, and P. Herman, “Biophotonic Tools for Single-Cell Molecular Analysis:A Lab-on-a-Chip Platform,” Canadian Institute for Photonic Innovations, 2003, http://www.cipi.ulaval.ca.
[10]W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, “Single Cell Manipulation, Analytics, and Label-Free Protein Detection in Microfluidic Devices for Systems Nanobiology,” Electrophoresis, vol.26, pp. 3689–3696, 2005.
[11]M. Dao, C.T. Limb, and S. Suresh, “Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers,” Journal of the Mechanics and Physics of Solids, vol.51, pp. 2259-2280, 2003.
[12]M. Tanabe, J. Makinodan, K. Suzuki, Y. Hosokawa, S. Konishi, N. Ozaki, and H. Oka, “Development of Micro Channel Array with Detecting Electrodes for Electrophysiological Biomedical Sensor,” in the Sixteenth Annual International Conference of IEEE, Micro Electro Mechanical Systems, Kyoto, Jan., pp. 407- 410, 2003.
[13]N.P. D’hahan, F. Sauter, F. Ricoul, C. Pudda, F. Marcel, T. Sordel, F. Chatelain, and I. Chartier, “Multi-Patch:A Chip-Based Ion-Channel Assay System for Drug Screening,” in Proceedings of ICMENS2003, The 2003 International Conference on MEMS, NANO and Smart Systems, Canada, Jul., 2003.
[14]C. Schmidt, M. Mayer, and H. Vogel, “A Chip-Based Biosensor for the Functional Analysis of Single Ion Channel,” Angew. Chem. Int. Ed., vol.39, no.17, pp. 3137-3140, 2000.
[15]H. Yu, B. Li, A. Sharon, and X. Zhang, “A Parallel Analysis and Sorting Chip for Single Cell Study,” in 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Boston, Oct., 2005.
[16]J. Park, S.H. Jung, Y.H. Kim, B. Kim, S.K. Lee ,and J.O. Park, “Design and Fabrication of an Integrated Cell Processor for Single Embryo Cell Manipulation,” Lab on a Chip, vol.5, pp.91-96, 2005.
[17]N. Chronis and L.P. Lee, “Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution,” IEEE Journal of Microelectromechanical Systems, vol.14, no.4, pp. 857-863, 2005.
[18]J. Gao, X.F. Yin, and Z.L. Fang, “Integration of Single Cell Injection, Cell Lysis, Separation and Detection of Intracellular Constituents on a Microfluidic Chip,” Lab on a Chip, vol.4, pp. 47-52, 2004.
[19]J. Gimsa, P. Marszalek, U. Loewe, T.Y. Tsong, “Dielectrophoresis and Electrorotation of Neurospora Slime and Murine Myeloma Cells,” Biophysical Journal, vol.60, pp. 749-760, 1991.
[20]H. Morgan, D. Holmes, and N.G. Green, “3D Focusing of Nanoparticles in Microfluidic Channels,” in IEE Proceedings Nanobiotechnology, vol.150, no.2, pp. 76-81, 2003.
[21]J. Voldman, R.A. Braff,M. Toner, M.L. Gray, and M.A. Schmidt, “Holding Forces of Single-Particle Dielectrophoretic Traps,” Biophysical Journal, vol.80, pp. 531–541, 2001.
[22]A.B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P.N. Marche, M. Tartagni, R. Guerrieri, F. Chatelaina, and N. Manaresi, “Electronic Sorting and Recovery of Single Live Cells from Microlitre Sized Samples,” Lab on a Chip, vol.6, pp. 121-126, 2006.
[23]D.R. Reyes, D. Iossifidis, P.A. Auroux, and A. Manz, “Micro Total Analysis Systems. 1. Introduction,Theory, and Technology,” Analytical Chemistry, vol.74, no.12, pp. 2623-2636, 2002.
[24]P.A. Auroux, D. Iossifidis, D.R. Reyes, and A. Manz, “Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications,” Analytical Chemistry, vol.74, no.12, pp. 2637-2652, 2002.
[25]S.J. Lee and S.Y. Lee, “Micro Total Analysis System (μ-TAS) in Biotechnology,” Applied Microbiology Biotechnology, vol.64, pp. 289-299, 2004.
[26]T.H. Park and M.L. Shuler, “Integration of Cell Culture and Microfabrication Technology,” Biotechnology Progress, vol.19, pp. 243–253, 2003.
[27]Y. Liu, E. Smela, N.M. Nelson, and P. Abshire, “Cell-lab on a Chip:a CMOS-Based Microsystem for Culturing and Monitoring Cells,” in Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, Sept., 2004.
[28]http://www.olympusmicro.com/
[29]J.K. Jaiswal, H. Mattoussi, J.M. Mauro, and S.M. Simon, “Long-term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates,” Nature Biotechnology, vol.21, pp. 47-51, 2003.
[30]J.K. Jaiswal and S.M. Simon, “Potentials and Pitfalls of Fluorescent Quantum Dots for Biological Imaging,” TRENDS in Cell Biology, vol.14, no.9, pp. 497-504, 2004.
[31]http://en.wikipedia.org/wiki/Raman_scattering
[32]V.J. Vodyanoy, and W.C. Neely, “High-Resolution Optical Microscope,” US patent 6,865,013 (September 30, 2003).
[33]V. Vodyanoy, “High Resolution Light Microscopy of Live Cells,” Microscopy Today, pp. 26-28, May, 2005.
[34]B. Foster, “Focus on Microscopy: A Technique for Imaging Live Cell Interactions and Mechanisms,” American Laboratory, Nov., 2004.
[35]http://www.cytoviva.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top