跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳之貴
研究生(外文):Chih-Kuei Chen
論文名稱:活性污泥/接觸曝氣法合併系統之處理功能研究
論文名稱(外文):The study of treatment functions of activated sludge/contact aeration combined system
指導教授:駱尚廉駱尚廉引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:252
中文關鍵詞:活性污泥/接觸曝氣法合併系統生物相人工合成生活污水屠宰場廢水餐廳廢水垃圾滲出水變性梯度膠凝電泳
外文關鍵詞:AS/CA systembiological phasesynthetic domestic wastewaterslaughterhouse wastewaterrestaurant wastewaterleachate
相關次數:
  • 被引用被引用:5
  • 點閱點閱:817
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
活性污泥/接觸曝氣法(AS/CA)合併系統係於傳統的活性污泥槽後半段中加入生物接觸濾材而成,其結合了懸浮性與固定性之菌相,以期兼具活性污泥法及接觸曝氣法的優點,而改善原有單一程序之缺點,以增進一般生物系統較不易去除的油脂及真色色度之處理效率。
由AS與AS/CA系統處理人工合成生活污水之結果得知,對COD、BOD及色度之去除,AS/CA系統均較單一AS系統佳,當油脂進流濃度由15 mg/L逐步提升至60 mg/L時,AS系統油脂出流濃度為13 mg/L,已超過國內放流水標準10 mg/L,但AS/CA系統油脂出流濃度為8 mg/L,仍可維持在放流水標準以內;但當油脂進流濃度再提昇至120 mg/L,兩系統的出流濃度均超過放流水標準。
由AS/CA合併系統之小模廠處理高濃度屠宰廢水的研究結果得知,生物曝氣槽之總水力停留時間若為8小時,COD平均值可降低至71 mg/L(去除率為94% ),BOD平均值可降至29 mg/L(去除率為91% ),SS平均值可降至43 mg/L(去除率為86%),真色色度平均值可降至47 unit(去除率為84%),油脂平均值則從54 mg/L降低至7 mg/L,去除率達87%。由實廠採樣資料驗證,屠宰場廢水經AS/CA合併系統處理,AS與CA槽的污泥顏色均呈金黃色,放流水水質穩定且均符合放流水標準。
對垃圾滲出水SS、BOD及COD的去除率,AS/CA系統分別較單一AS系統高出10.3%、6.4%及4%。由實廠資料驗證得知,AS/CA系統處理垃圾滲出水,COD去除率約為35.2∼42.5%;BOD去除率約為59.9∼65.4%。
餐廳廢水之小模廠實驗結果顯示,在生物曝氣槽之總水力停留時間8小時情況下,可將水質變異大的餐廳廢水,處理至穩定的出流水質,例如BOD之標準偏差值可由進流水之158.0 mg/L降至出流水的8.8 mg/L。由AS槽及CA槽之反應動力參數分析結果得知,AS槽COD之體積負荷(P值)為625 g/m3•day大於CA槽之233 g/m3•day,AS/CA整體系統的P值為455 g/m3•day,介於兩槽之間;而AS槽之Ks值較CA槽為高,分別為41 mg/L與20 mg/L。
本研究以變性梯度膠凝電泳(Denatural Gradient Gel Electrophoresis, DGGE)方法,分析單獨活性污泥系統、單獨接觸曝氣系統以及AS/CA合併系統中之生物相,結果顯示AS/CA合併系統所含之生物相與生物量均較單一活性污泥法或單一接觸曝氣法為多。
The activated sludge/contact aeration (AS/CA) combined system was created by adding biological contact filters into the rear sector of the activated sludge tank. The system contains both suspended and fixed microorganisms. This combined system presents the advantages of both AS system and CA system. It also improves the disadvantages of these two individual systems. A special feature is that the AS/CA system can enhance the removal ratios of the true color, oil and grease.
Both AS/CA and AS-only systems were tested to treat the synthetic domestic sewage. The BOD, COD and color removal ratios of both treatment systems were compared. The results showed that the pollutant removal ratios of the AS/CA system were higher than those of the AS-only system. When the oil and grease was spiked into the sewage, oil and grease concentrations were gradually increased from 15 mg/L to 60 mg/L. When the influent oil and grease concentration was 60 mg/L, the effluent concentration of the AS system was 13 mg/L, which was higher than 10 mg/L, the effluent standard of oil and grease. However, in the AS/CA system, the effluent oil and grease concentration was 8 mg/L, which was under the regulated standard. When the influent oil and grease concentrations reached 120 mg/L, the effluent concentrations of both systems exceeded the regulated standard.
A pilot treatment plant was constructed and located in a slaughterhouse. The AS/CA system was operated with eight-hour hydraulic retention time (HRT), and the results indicated that average effluent COD = 71 mg/L (94% removal ratio), BOD = 29 mg/L (91% removal ratio), SS = 43 mg/L (86% removal ratio), and true color = 47 unit (84% removal ratio). The AS/CA system can treat the oil and grease concentration from 54 mg/L to 7 mg/L (87% removal ratio). In the case of slaughterhouse wastewater treatment, the sludge presented as golden color in AS and CA tanks. The effluent water quality can meet Taiwan’s regulation, and the AS/CA system was much more stable.
In terms of the removal ratios of SS, BOD and COD of the leachate, these ratios in AS/CA system are 10.3%, 6.4% and 4% higher than those ratios in AS system, respectively. The AS/CA system efficiently decomposes the leachate, resulting in a 35.2% ~ 42.5% removal ratio of COD and a 59.9% ~ 65.4% removal ratio of BOD.
Under eight hours of HRT, the AS/CA system was able to treat restaurant wastewater which had fluctuating quality, and to reduce the standard deviations of COD and BOD from 115.8 and 158 to 40.5 and 8.8, respectively.
The kinetic parameters derived through the linear regression analysis of COD data yielded a volume loading P value of 625 g/m3•day for the AS tank, greater than 233 g/m3•day for the CA tank. The p value of 455 g/m3•day for the complete AS/CA system was between those for AS and CA tanks. The Ks values of 41 mg/L for the AS tank was greater than 20 mg/L for the CA tank.
Denaturing Gradient Gel Electrophoresis (DGGE) analysis was applied to samples taken from activated sludge system, contact aeration system, and AS/CA system. The analytical results suggested that when these three systems were compared, the microbe diversity and quantity of the combined system was relatively high.
第一章 緒論
1.1 研究緣起 1-1
1.2 研究目的 1-2
1.3 研究流程及內容 1-2

第二章 文獻回顧
2.1 活性污泥法 2-1
2.2 接觸曝氣法 2-6
2.3 硝化與脫硝作用 2-13
2.4 分子生物技術之應用 2-20
2.4.1 16S rDNA 2-20
2.4.2 聚合酵素連鎖反應(PCR) 2-21
2.4.3 變性梯度凝膠電泳(DGGE) 2-22

第三章 實驗設備與方法
3.1 實驗設計 3-1
3.2 實驗設備 3-6
3.2.1 實驗室實驗模型設備 3-6
3.2.2 現場實驗模型設備 3-11
3.2.3 屠宰廢水實廠設備 3-13
3.2.4 垃圾滲出水實廠設備 3-14
3.3 實驗方法 3-15
3.3.1 實驗室模廠實驗 3-15
3.3.2 現場模廠實驗 3-16
3.3.3 實廠實驗 3-19
3.4 水質及生物量分析 3-23
3.5 掃描式電子顯微鏡(SEM)分析 3-23
3.6 DNA萃取 3-24
3.7 聚合酵素連鎖反應(PCR) 3-27
3.8 變性梯度膠凝電泳(DGGE) 3-28

第四章 結果與討論
4.1 水質特性探討 4-1
4.1.1 人工合成生活污水 4-1
4.1.2 屠宰廢水 4-1
4.1.3 餐廳廢水 4-2
4.1.4 垃圾滲出水 4-3
4.2 人工合成生活污水之處理功能比對 4-3
4.2.1 微生物之成長狀況比較 4-3
4.2.2 微生物之處理功能比較 4-12
4.3 探討AS/CA合併系統之最佳處理效率 4-20
4.3.1 屠宰廢水實驗 4-20
4.3.2 餐廳廢水模廠實驗 4-32
4.3.3 垃圾滲出水實廠實驗 4-41
4.4 活性污泥曝氣池與接觸曝氣池之微生物觀測 4-48
4.4.1 屠宰廢水模廠實驗 4-48
4.4.2 屠宰廢水實廠實驗 4-53
4.5 AS/CA系統之反應動力模式分析 4-56
4.5.1 屠宰廢水實驗 4-56
4.5.2 餐廳廢水模廠實驗 4-64
4.6 AS/CA系統之SEM及DGGE分析 4-71
4.6.1 人工合成生活污水模廠實驗 4-71
4.6.2 屠宰廢水模廠實驗 4-77
4.6.3 餐廳廢水模廠實驗 4-83
4.7 垃圾滲出水之處理功能比對研究 4-86
4.7.1 AS系統處理成效 4-86
4.7.2 AS/CA系統處理成效 4-86
4.7.3 AS與AS/CA系統之處理成效比較 4-87
4.8 綜合討論 4-94
4.8.1 AS/CA系統較佳的設計操作參數 4-95
4.8.2 AS/CA系統之特點說明 4-96

第五章 結論
5.1 結論 5-1
5.2 建議 5-4
Abeysinghe D.H., Shanableh A. and Rigden B.(1996). “Biofilters for water reuse in aquaculture”, Wat. Sci. Tech., Vol.34, No.11, pp.253-260.
Ahn J., Daidou T., Tsuneda S. and Hirata A.(2002). “Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay”, Wat. Res., Vol.36, pp.403-412.
An H., Qian Y., Gu X. and Tang W.Z.(1996). “Biological treatment of dye wastewaters using an anaerobic-Oxic system”, Chemosphere, Vol.33, No.12, pp.2533-2542.
Asano T. and Levine A.D.(1996). “Wastewater reclamation, recycling and reuse: past, present, and future”, Wat. Sci. Tech. Vol.33, No.10, pp.1-14.
Azmi W., Sani R.K. and Banerjee U.C.(1998). “Biodegradation of triphenylmethane dyes”, Enzyme and Microbial Technology, Vol.22, pp.185-191.
Atlas R. M. and Richard B. (1998). “Microbial Ecology”, 4th Edition. Benjamin Cummings Science Publishing, Menlo Park.
Banks C.J. and Wang Z.(1995). “Kinetic evaluation of an anaerobic fluidized-bed reactor treating slaughterhouse wastewater”, Bioresource Technology, Vol.52, pp.163-167.
Becker P., Koster D., Popov M.N., Markossian S., Antranikian G. and Markl H.(1999). “The biodegradation of olive oil and treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions”, Wat. Res., Vol.33, pp.653-660.
Borja R., Banks C.J., Wang z. and Mancha A.(1998). “Anaerobic digestion of slaughterhouse wastewater using a combination sludge blanket and filter arrangement in a single reactor”, Bioresource Technology, Vol.65, pp.125-133.
Burgess J.E. and Stuetz R.M. (2002). “Activated sludge for the treatment of sulphur-rich wastewater”, Minerals Engineering Vol.15, pp.839-846.
Chang G.K., Hyung S.L. and Tai I.Y. (2003). “Resource recovery of sludge as a micro-media in an activated sludge process”, Advances in Environmental Research, Vol.7, pp.629-633.
Chang G.R., Liu J.C. and Lee D.J. (2001). “Co-conditioning and dewatering of chemical sludge and waste activated sludge”, Wat. Res., Vol.35, No.3, pp.786-794.
Characklis W. G. (1981). “Fouling biofilm development: a process analysis”, Biotech. and Bioeng., Vol.XXIII, pp.1923~1960.
Chen C.K. and Lo S.L.(2003). “Treatment of slaughterhouse wastewater using an activated sludge/contact aeration process”, Wat. Sci. Tech., Vol.47, No.12, pp.285-292.

Chen K.C., Chen C.Y., Peng J.W. and Houng J.Y.(2002). “Real-time control of an immobilized-cell reactor for wastewater treatment using ORP”, Wat. Res., Vol.36, pp.230-238.
Chen X., Chen G. and Yue P.L.(2000). “Separation of pollutants from restaurant wastewater by electrocoagulation”, Separation and Purification Technology, Vol.19, pp.65-76.
Collins, C.F. and Incorpera, F.P.(1978). “The effect of temperature control on biological wastewater treatment process”, Wat. Res. Vol.12, pp.547-557.
Coughlin M.F., Kinkle B.K. and Bishop P.L.(2002). “Degradation of acid organge 7 in an aerobic biofilm”, Chemosphere, Vol.46, pp.11-19.
Deronzier G., Duchene P. and Heduit A.(1998). “Optimization of oxygen transfer in clean water by fine bubble diffused air system and separate mixing in aeration ditches”, Wat. Sci. Tech., Vol.38, No.3, pp.35-42.
Dewulf J., Langenhove H.V. and Everaert P.(1999).“Determination of Henry’s law coefficients by combination of the equilibrium partitioning in closed systems and solid-phase microextraction techniques”, J. of chromatography A, Vol.830, pp.353-363.
Dincer A.R. and Kargi F.(2000). “Kinetics of sequential nitrification and denitrification processes”, Enzyme and Microbial Technology, Vol.27, pp.37-42.
Etter R.J., Rex M.A., Chase M.C. and Quattro J.M.(1999). “A genetic dimension to deep-sea biodiversity”, Deep-Sea Res., Vol.1, No.46, pp.1095-1099.
Fadel M. E., Zeid E. B., Chahine W. and Alayli B.(2001). “Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content”, Waste Management Vol.22, pp.26-282.
Ford D.L. and Eckenfelder, W.W.(1967). “Effect of process variable on sludge floe formation and setting characteristics”, J. WPCF. Vol.39, No.12, pp.1850-1859.
Eckenfelder W.W.(1961). “Theory and practice of activated sludge process modifications”, Water & Sew Works.
Glass C. and Silverstein J.(1998). “Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation”. Wat. Res., Vol.32, No.3, pp.831-839.
Hamoda M.F. and Adb-E1-Bary M.F.(1987).“Operating characteristics of aerated submerged fixed-film (ASFF) bioreactor”, Wat. Res., Vol.21, No.8, pp.939-947.
Hamoda M.F.(1989). “Kinetic analysis of the aerated submerged fixed-flim (ASFF) bioreactors”, Wat. Res., Vol.23, No.9, pp.1147-1154.
Hargrove L.L., Westerman P.W. and Losordo T.M.(1996).“Nitrification in three-stage and single-stage floating bead biofilters in a laboratory-scale recirculating aquaculture system”, Aquacultural Engineering, Vol.15, No.1, pp.67-80.
Heavey H.(2003). “Low-cost treatment of landfill leachate using peat”, Waste Management Vol.23, pp.447-454.
Hideo N. and Masuo O.(1993). “Study on the denitrification ability of the contact aeration process”, Wat. Sci. Tech. Design and peration of small wastewater treatment plants proceedings of the 2nd international conference.
Hien P.G., Oanh L.T.K., Viet N.T. and Lettinga G.(1999). “Closed wastewater system in the Tapioca industry in Vietnam”, Water Sci. Tech., Vol.39, No.5, pp.89-96.
Johns M.R., Harrison M.L., Hutchinson P.H. and Beswick P.(1995). “Sources of nutrients in wastewater from integrated cattle slaughterhouse”, Wat. Sci. Tech., Vol.32, No.12, pp.53-58.
Kujawa K. and Klapwijk B.(1999). “A method to estimate denitrification potential for predenitrification systems using NUR batch test”. Wat. Res., Vol.33, No.10, pp.2291-2300.
Lapara T.M., Nakatsu C.H., Pantea L.M. and Alleman J.E.(2001). “Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development”, Wat. Res., Vol.35, No.38, pp.4417-4425.


Lapara T.M., Nakatsu C.H., Pantea L.M. and Alleman J.E.(2002). “Stability of the bacterial communities supported by a seven-stage biological process steating pharmaceutical wastewater as revealed by PCR-DGGE”, Wat. Res., Vol.36, pp.638-646.
Leclerc M., Delbes C., Moletta R. and Godon J-J.(2001). “Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester”, FEMS Microbiol Ecol, Vol.34, pp.213-220.
Lee D.S., Jeon C.O. and Park J.M.(2001). “Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reator using single system”, Wat. Res., Vol.35, pp.3968-3976.
Liu W.T., Chan O.C. and Fang H.P.(2002). “Microbial community dynamics during start-up of acidogenic anaerobic reactors”, Wat. Res., Vol.36, pp.3203-3210.
Loosdrecht M.C.M.V. and Jetten M.S.M.(1998) “Microbiological conversions in nitrogen removal”, Wat. Sci. Tech., Vol.38, No.1, pp.1-7.
Malhotra P. K.(1995). “Base uplifting analysis of flexibly supported liquid storage tank”, Earthquake Engineering and Structural Dynamics, Vol.24, No.12, pp.1591-1607.
Manjunath N.T., Mehrotra I. and Mathur R.P.(2000). “Treatment of wastewater from slaughterhouse by DAF-UASB system”, Wat. Sci. Tech., Vol.34, No.6, pp.1930-1936.
Martinez J., Borzacconi L., Mallo M., Galisteo M. and Vinas M.(1995). “Treatment of slaughterhouse wastewater”, Wat. Sci. Tech., Vol.32, No.12, pp.99-104.
Munch E.V., Lant P. and Keller J.(1996) “Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors”, Wat. Res. Vol.30, No.2, pp.277-284.
Nakagawa T., Sato S., Yamamoto Y. and Fukui M.(2002). “Successive changes in community structure of an ethylbenzene-degrading sulfate-reducing consortium”, Wat. Res., Vol.36, pp.2813-2823.
Nakajima J., Fujimura Y. and Inamori Y.(1999). “Performance evaluation of on-site treatment facilities for wastewater from households, hotels and restaurants”, Wat. Sci. Tech., Vol.39, No.8, pp.85-92.
Oh J. and Silverstein J.(1999). “Oxygen inhibition of activated sludge denitrification”, Wat. Res., Vol.33, No.8, pp.1925-1397.
Ornektekin S., Paksoy H. O. and Demirel Y.(1996). “The performance of UNIFAC and related group contribution models Part II. Prediction of Henry’s law constants”, Thermochimica Acta, Vol.287, pp.251-259.
Pala A. and Tokat E.(2002). “Color removal from cotton textile industry wastewater in an activated sludge system with various additives”, Wat. Res., Vol.36, pp.2920-2925.

Pollice A., Tandoi V. and Lestingi C.(2002). “Influence of aeration and sludge retetion time on ammonium oxidation to nitrite and nitrate”, Wat. Res., Vol.36, pp.2541-2546.
Pozo R.D., Diez V. and Beltran S.(2000). “Anaerobic pre-treatment of slaughterhouse wastewater using fixed-film reactors”, Bioresource Technology, Vol.71, pp.143-149.
Ruiz I., Veiga M.C., Santiago P.D. and Blazquez R.(1997). “Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter”, bioresource Techology, Vol.60, pp.251-258.
Saby S., Djafer M. and Chen G.H.(2002). “Feasibility of using a chlorination step to reduce excess sludge in activated sludge process”, Wat. Res., Vol.36, pp.656-666.
Sankai T., Ding G., Emori N., Kitamura S., Katada K., Koshio A., Maruyama T., Kudo K. and Inamori Y.(1997). “Treatment of domestic wastewater mixed with crushed carbage and garbage washing water by advanced gappei-shori johkaso”, Wat. Sci. Tech., Vol.36, No.12, pp.175-182.
Shin S. and Bhowmik S.R.(1993). “Thermal kinetics of color changes in pea puree”, Journal of Food Engineering, Vol.24, pp.77-86.
Sletten R.S., Benjamin M.M., Horng J.J. and Ferguson J.F.(1995). “Physical-chemical treatment of landfill leachate for metals removal”, Wat. Res. Vol.29, No.10, pp.2376-2386.
Tatsi A.A. and Zouboulis A.I.(2002). “A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate”, Advances in Environmental Research 6, pp.207-219.
Xie B. and Nakamura E.(2002). “Effects of heavy metals on activated sludge unacclimated and recovery technique for from the shock by heavy metals”, Wat. Res..
Yasui H., NaKamura K., Sakuma S., Iwasaki M. and Sakai Y.(1996). “A full-scale operation of a novel activated sludge process without excess sludge production”, Wat. Sci. Tech., Vol.34, No.3, pp.395-404.
Yoo H., Ahn K.H., Lee H.J., Lee K.J., Kwak Y.J. and Song K.G.(1999). “Nitrogen removel from systhetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor”, Wat. Res., Vol.33, No.1, pp.145-154.
Yu G., Zhu W. and Yang Z.(1998). “Pretreatment and biodegradability enhancement of DSD acid manufacturing wastewater”, Chemosphere, Vol.37, No.3, pp.487-494.
李怡臻(1990). 「以接觸曝氣法處理皮革廢水之研究」,國立台灣大學環境工程學研究所,碩士論文。
袁仲宇(1995). 「以上流式厭氧污泥法處理肉品廢水中油脂之研究」,國立台灣大學環境工程學研究所,碩士論文。

陳秋楊和文振平(1998). 「好氧狀態下固定性與懸浮微生物生長競爭模式之研究」,第二十三廢水處理技術研討會論文集。
曾四恭(1995). 「好氧脫硝菌對氮去除之影響」,行政院國家科學委員會專題研究計劃成果報告。
陳志銘(2002). 「UASB串聯活性污泥系統處理養豬廢水之動力行為」,國立成功大學環境工程學研究所,碩士論文。
行政院環保署環檢所(1995). 「環境檢測方法」。
駱尚廉(1991). 「環境數學」,茂昌圖書有限公司。
樓基中(1982). 「廢水生物處理之物理化學改良法之研究」,國立台灣大學環境工程學研究所,碩士論文。
歐陽嶠暉(1995). 「下水工程學」,長松出版社。
周裕然(2002). 「多段進流去氮除磷系統穩動態處理及控制特性之研究」,國立中央大學環境工程學研究所,博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top