跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳慧欣
研究生(外文):Hui-hsin Chen
論文名稱:汞在污染場址魚體及環境介質分佈以及生物習性影響之探討
論文名稱(外文):Distribution of mercury in fishes and environmental media of a contaminated site and the influence of biological behavior
指導教授:吳先琪
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:116
中文關鍵詞:污染場址甲基汞GC/MS水產生物營養階層
外文關鍵詞:contamination sitemercurymethylmercuryGC/MSfishery productstrophic level
相關次數:
  • 被引用被引用:1
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在受到汞污染的水體中,水產生物會經由其食物來源累積汞,進而被人們食用,對人體造成傷害。因此本研究嘗試建立預測魚肉中汞濃度的方法,藉以評估污染可能造成之風險。本研究於2005年2月至2006年3月採集底泥樣品水樣,於2005年2月及魚體樣品進行研究。
在魚體樣品分析結果中總汞濃度以海鰱最高達3.26±0.70ppm,鯔最低為0.30±0.06ppm,甲基汞濃度以海鰱最高達3.08±0.72ppm,鯔最低為0.25±0.05ppm,顯示該區魚體遭受污染,其生物對於底泥之累積因子為0.1297。
δ15N分析結果顯示魚體樣品體內δ15N之大小次序和資料庫所記載之營養階層有相當程度之差異,並且各魚種間魚體中汞濃度之含量與δ15N相關性並不明顯,但可以確定的是一般認為營養階層較高之肉食性魚類其體內易有較高之汞濃度。且發現雖然個別魚種內δ15N與汞濃度具有相關性,但卻易隨著季節有大的變化,例如冬天有較低的汞濃度。比較各魚體汞濃度及基本特性之相關性後,發現魚體體重及體長可能是影響魚體汞濃度之因子。
風險評估結果顯示以居民食用十分之一場址水產之情況下,其危害商數並未大於1,表示並無立即危害。但因魚體內甲基汞濃度仍超過魚蝦類管制標準,顯示底泥遭受汞污泥之污染,雖對於當地居民並無立即危害,但若以保守情況估計,其危害商數仍會大於1,仍建議封閉該場區並禁止捕撈水產生物。
Fishery products will accumulate mercury via their food source in contaminated water bodies, and then be consumed by people, and causing the injury to human bodies. This study is aimed to develop the method predicting the mercury concentration in fish and the human risk. The bottom mud samples, water sample, fish, specimen were collected during September 2005 to March 2006.
The results showed that the total mercury concentrations of Elops machnata was up to 3.26±0.70ppm. The concentrations of total mercury for Mugil cephalus was only 0.30±0.06ppm. However, biomagnification is not obvious.
The result of δ15N analysis indicates no correlation with the trophic level base on the fish. The concentration of mercury in the fish`s body is independ of δ15N, however that the carnivorous fish of high trophic level contains higher concentration of mercury is confirmed.
The mercury concentration is related to δ15N in some individual fish, but varied with season. There is lower mercury concentration in winter. Comparing the fish''s mercury concentration to the basic fish''s character, we found that the mercury concentration is affected by the weight and length of fish.
The result of risk assessment suggest that Non-cancer Hazard Quotient (HQ) was lower than 1. There is no imminent hazard. However, the methyl mercury concentration in fish still exceeds the fish and shrimp''s regulatory standard. Although the bottom residents which contains it is suggested, mercury has no danger immediate to local residents, that sealing this place and stopping harvesting the aquatic products is necessary.
目錄
謝誌
中文摘要
英文摘要
第一章 緒論 1
1.1研究緣起 1
1.2研究目的 3
第二章 文獻回顧 5
2.1研究場址背景 5
2.1.1 中國石油化學公司安順廠簡介 5
2.1.2 汞於安順場海水儲存池污染現況 8
2.2汞的特性及對人體之影響 9
2.2.1 汞的種類物化特性 9
2.2.2不同汞物種的生物化學循環 11
2.2.3 毒性 13
2.2.4 相關法規 15
2.2.5 汞之人體暴露途徑及暴露劑量 17
2.3汞的分析方法 19
2.4汞在生態系統之分佈 26
2.5魚體汞累積之機制 28
第三章 研究方法 35
3.1研究架構 35
3.2樣品採集 37
3.2.1 底泥之採集 37
3.2.2 上層水之採集 37
3.2.3 魚體之採集 39
3.3總汞、無機汞及有機汞分析方法 39
3.3.1 藥品 39
3.3.2 樣品前處理 41
3.3.3汞及甲基汞分析方法中儀器條件之設定 41
3.3.4 定性及定量分析 43
3.3.5冷蒸氣原子吸光儀分析 (Cold Vapor Atomic Absorption Spectroscopy)儀器設定 43
3.4其他相關檢測方法 45
3.4.1有機質分析 45
3.4.2穩定同位素分析 46
3.5風險評估 47
第四章 結果與討論 49
4.1魚體汞分析方法建立 49
4.1.1影響回收率因子之確定 49
4.1.2消化效率因子的探討 51
4.1.3標準參考樣品的分析與方法確立 52
4.2 底泥樣中汞濃度 57
4.3 水樣中汞濃度 62
4.4 魚體中汞濃度之分佈 65
4.4.1魚種特性 65
4.4.2魚體中汞物種分佈 71
4.4.5魚體中汞濃度與食性及棲所生態之關聯 86
4.4.6同地點不同季節所捕獲吳郭魚魚體中汞濃度之比較 93
4.4.7 場區內外魚體汞濃度之差異 96
4.5 汞在封閉水體生態系統中暴露途徑分析 97
4.6 人體健康風險評估 98
第五章 結論與建議 101
5.1結論 101
5.2後續研究建議 104
參考文獻.. 105
附錄…………………………………………………………………….111
附表一 底泥採樣記錄 111
附表二 CF-IRMS測定δ15N之精密度與準確度(以BF當working standard) 113
附表三 CF-IRMS測定δ13C之精密度與準確度(以BF當working standard) 114
附圖一 場區外魚體採樣位置 115

表目錄
表2-1 元素汞、無機汞、有機汞之物理、化學性質 10
表2-2國內之管制標準 16
表2-3其他國家管制標準 17
表2-4一般汞分析方法 20
表2-5經由衍生化之方式分析汞物種 24
表2-6 比較以GC-AFS, GC-AES, GC-MS分析汞 25
表2-7汞物種吸收路徑 27
表3-1 氣相層析儀設定 42
表3-2 質譜儀設定 42
表3-3 選擇離子監測設定 42
表3-4 AA pump設定 44
表4-1 分析條件實驗設計 53
表4-2 不同消化條件之實驗設計 53
表4-3 實驗條件設計 53
表4-4第一次採樣點即時監測結果 63
表4-5第二次採樣點即時監測結果 64
表4-6第一次採樣之水中總汞、SS及鹽度 64
表4-7第二次採樣水中總汞、總有機碳、硫酸鹽、SS及鹽度 64
表4-8 各魚種之型態特徵、穩定同位素分析、脂含量及含水率 67
表4-9 各魚種之棲所生態描述及食物來源 68
表4-10 魚體中汞濃度 73
表4-11 各魚種汞濃度及基本特性之相關性 82
表4-12 不同季節採樣之吳郭魚體內汞濃度 94
表4-13 廠區內、外採樣之吳郭魚體內汞濃度 96
表4-14 各魚種之危害商數 99
圖目錄
圖2-1安順廠場區之示意圖 6
圖2-2安順廠海水儲存池汞分析結果 8
圖2-3汞循環 12
圖2-4魚體累積汞機制示意圖 29
圖3-1研究架構 36
圖3-2安順廠海水儲存池採樣位置 38
圖3-3 GC/MS圖譜 43
圖4-1影響回收率因子確立之實驗回收率 54
圖4-2醋酸銅溶液加量之實驗回收率 55
圖4-3消化時間及鹼液影響之回收率 55
圖4-4溫度影響之實驗回收率 56
圖4-5 底泥中總汞濃度及其分佈 59
圖4-6 底泥總汞濃度 60
圖4-7 底泥總汞濃度及有機質含量 61
圖4-8 穩定同位素分析與資料庫營養階層比較(a) δ15N與營養階層之關係(b) δ13N與營養階層之關係 70
圖4-9 總汞濃度及甲基汞、無機汞濃度 74
圖4-10 魚種營養階層(按fishbase之順序由小(左)到大(右))及汞濃度 76
圖4-11 魚種營養階層(按δ15N由小(左)到大(右))與魚體汞濃度之關係 76
圖4-12 魚體汞濃度與δ15N之關係 77
圖4-13 各魚種汞濃度與δ15N之關係 78
圖4-14 魚體汞濃度及油脂含量之關係 83
圖4-15 魚體汞濃度及體重之關係 83
圖4-16 魚體汞濃度及體長之關係 84
圖4-17 印度牛尾魚汞濃度及基本特性 85
圖4-18 雜食性魚類汞濃度及特性 88
圖4-19 肉食性魚類汞濃度及特性 89
圖4-20 底棲性魚類汞濃度及特性 90
圖4-21 上層食性魚類汞濃度及特性 91
圖4-22 底棲肉食性魚類汞濃度及特性 92
圖4-23 第一次採樣吳郭魚汞濃度及其特性 94
圖4-24 第二次採樣吳郭魚汞濃度及其特性 95
圖4-25 不同地區魚體汞濃度及底泥濃度 100
Adriano C.D., 2001, Trace elememts in terrestrial environments. Springer, Second Edition.

Andrew, B.; Jonathan, E. D.; Andrew, J. P.; Clive, T. W., 1989. Continuous-flow stable isotpoe analysis for biologists. Spectroscopy. 4, 44-52.

Barrie, A.; Lemley, M., 1989. Automated 15N/13C analysis of biological materials. American Laboratory.

Baeyens, W.; Leermakers, M.; Papina, T.; Saprykin, A.; Brion, N.; Noyen, J.; Gieter, M. D.; Elskens, M., 2003. Bioconcentration and biomangnification of mercury and methylmercury in North Sea and Scheldt Estuary Fish. Arch. Environ. Contam. Toxicol. 45, 498-508.

Bargagli, R.; Monaci, F.; Sanchez-Hernandez, J.C.; Cateni D., 1998. Biomanification of mercury in an Antarctic marine coastal food web. Mar. Ecol. Prog. Ser. 169, 65-76.

Beichert, A.; Padberg, S.; Wenclawiak, B. W., 2000. Selective determination of alkylmercury compounds in solid matrices after subcritical water extraction, followed by solid-phase microextraction and GC-MS. Appl, Organometal. Chem. 14, 493-498.

Bloom, N. S.; Gill, G. A.; Cappellion, S.; Dobbs, S.; Mcshea, L.; Driscoll, C., 1999. Speciation and cycling of mercury in Lavaca Bay, Texas, Sediment. Environ. Sci. & Technol. 33, 7-13.

Boening, D. W., 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40, 1335-1351.

Cai, Y.; Bayona, J. M., 1995. Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivation following by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. A. 696, 113-122.

Cai, Y.; Monsalud, S.; Jaffe, R.; Jomes, R. D., 2000. Gas chromatographic determination of organomercury following aqueous dervatization with sodium tetraethylborate and sodium tetraphenylborate Comparative study of gas Chromatography coupled with atomic fluorescence spectrometry, atomic emission spectrometry and mass spectrometry. J. Chromatogr. A. 876, 147-155.

Chen, S. S.; Chou, S. S.; Hwang, D. F., 2004. Determination of methylmercury in fish using focuesd microwave digestion following by Cu2+ addition, sodium tetrapropylborate dervatization, n-heptane extraction, and gas chromatography-mass spectrometry. J. Chromatogr. A. 1024, 209-215.

Centineo G.; González E. B.; Alfredo S. M., 2004. Multielemental speciation analysis of organometallic compounds of mercury, lead and tin in natural water samples by headspace-solid phase microextraction followed by gas chromatography–mass spectrometry. J. Chromatogr. A 1034, 191-197.

Desrosiers, M.; Planas, D.; Mucci, A., Mercurymethylation in the epilithon of Boreal Shield aquatic ecosystems. Environ. Sci. & Technol.

Gochfeld M., 2003. Case of mercury exposure, bioavailability, and absorption. Ecotoxicol. and Environ.l Safety. 56, 174-179.

Gray, J. S., 2002. Biomagnification in marine systems: the persective of an ecologist. Marine Pollution Bulletin. 45, 46-52.

Hammerschmidt, C. R., Fitzgerald, W. F., Lamborg, C. H., Balcom, P. H., Visscher, P. T., 2004. Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry. 90, 31-52.

Han, B. C.; Jeng, W. L.; Chen, R. Y.; Fang, G. T.; Hung, T. C.; Tseng, R. J. 1998. Estimation of Target Hazard Quotients and Potential Health Risks for Metals by Consumption of Seafood in Taiwan. Arch. Environ. Contam. Toxicol. 35, 711-720.

Holsbeek, L.; Das, H. K.; Joiris, C. R., 1997. Mercury speciation and accumulation in Bangladesh freshwater and anadromous fish. Science of the Total Environment. 198, 201-210.

Horvat, M.; Nolde, N.; Fajon, V.; Jereb, V.; Logar, M.; Lojen, S.; Jadojko, J.; Falnoga, I.; Liya, Q.; Faganeli, J.; Drobne, D., 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, Chnia. Science of the Total Environment. 204, 231-256.

Huang, J. H.; Ilgen, G.; Matzner, E., 2003. Simultaneous extraction if organotin, organolead and organomercury species from soils and ;itter. Analytica Chimica Acta. 493, 23-34.

Ipolyi, I.; Massanisso, P.; Sposato, S., Fodor, P., Morabito, R., 2004. Concentration levels of total and methylmercury in mussel samples collected along the coasts of Sardinia Island(Italy). Analytica Chimica Acta. 505, 145-151.

Joiris, C. R.; Ali, I. B.; Holsbeek, L.; Bossicart, M.; Tapia, G., 1995. Total and organic mercury in Barents Sea Pelagic fish. Environ. Contam. Toxicol. 55, 674-681.

Katarina, G.; Mats, J., 2003. Is bimolecular Reduction of Hg(II) complexes possible in aqueous systems of environmental importance. J. Phys. Chem. A. 107, 4478-4482.

Khan, B.; Tansel, B., 2000. Mercury bioconcentration factors in American Alligators (Alligator mississippiensis) in the Florida Everglades. Ecotoxicol. and Environ.l Safety. 47, 54-58.

Lambertsson, L.; Nilsson, M., 2006. Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in Estuarine sediments. Environ. Sci. & Technol. 40, 1822-1829.

Lawrence, A. L.; Mason, R. P., 2001. Factor controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod Leptocheirus plumulosus. Environ.l Pollution. 111, 217-231.

Michel, S.; Marc, L.; Steve, G.; Denis, L., 2005. Fish growth rate modulate mercury concentration in walleye(Sander vitreus) from eastern Canadian lakes. Environ. Research. 98, 73-82.

Muhaya, B. B. M.; Leermakers, M.; Baeyens, W., 1997. Total mercury and methylmrcury in sediments and in the polychaete Nereis Diversicolor at groot buitenschoor (acheldt estuary, belgium). Water, Air, and Soil Pollution. 94, 109-123.

Murphy, T.; Jones, P.; Hill, S.J., 1996. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry. Spectrochimica Acta Part B. 51, 1867-1873.

Page A. L. Ed., 1982, Methods of Soil Analysis Part2, Ch29. Second Edition

Preston, Y.; McMillan, D. C., 1998. Rapid sample throughput for biomedical stable isotpoe tracer studies. Biomedical and environmental mass spectrometry. 16, 229-235.

Ravichandran, M., 2004. Interactions between mercury and dissolved organic matter-a review. Chemosphere. 55, 319-331.

Riisgard, H. U.; Hansen, S., 1990. Biomagnification of mercury in a marine grazing food-chain: algal cell Phaseodactylum tricornutum, mussels Mytilus edulis and flounders Platichthys flesus studied by means of a stepwise-reduction-CVAA method. Mar. Ecol. Prog. Ser. 62, 259-270.

Rodil, R.; Carro, A. M.; Lorenzo, R. A.; Abuin, M.; Cela, R., 2002. Methylmercury determination in biological samples by derivatizatoon, solid-phase microextraction and gas chromatography with microwave-induced plasma atomic emission spectrometry. J. Chromatogr. A. 963, 313-323.

Roger, F. N. R.; Lawrence, K. D., 2005. Mercury concentrations in muscle, brain and bone of Western Alaskan waterfowl. Science of the total environment. 349, 277-283.

Silva, D. S. D.; Lucotte, M.; Roulet, M.; Poirier, H.; Mergler, D.; Santos, E. O.; Crossa, M., 2005. Trophic structure and bioaccumuation of mercury in fish of three natural lakes of the brazilian amazon. Water, Air, and Soil Pollution. 165, 77-94.

Swanson, H. K.; Johnston, T. A.; Schindler, D. W.; Bodaly, R. A.; Whittle, D. M., 2006. Mercury bioaccumulation in Forage fish communities invaded by Rainbow Smelt (Osmerus mordax). Environ. Sci. & Technol. 40, 1439-1446.

State Of Alaska Epidemiology, 2004, Use of Traditional Foods in a Healthy Diet in Alaska: Risks in Perspective. Volume 2. Mercury.

Valbona, C.; Susannah, L. S., 2005. Kinetics and mechanism if the mercury(II)-assisted hydrolysis of methyl iodide. Inorg. Chem. 44, 2570-2512.

Warner, K. A.; Bonzongob, J. C. .; Rodena, E. E.; Warda, G. M.; Greenc, A. C.; Chaubeyd, I.; Lyonsc, W. B.; Arrington, D. A., 2005. Effect of watershed parameters on mercury distribution in different environmental compartment in the Mobite Alabama River Basin, USA. Science of the total environment. 347, 187-207.

Watras, C. J.; Bloom, N. S., 1992. Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnol. Oceanogr. 37, 1313-1318.

Yang, L.; Colombini, V. C.; Paulette, M.; Zolta´n, M.; Sturgeon, R. E., 2003. A pplication of isotope dilution to the determination of methylmercury in fish tissue by solid-phase microextraction gas chromatography–mass spectrometry. J. Chromatogr. A. 1011, 135-142.

Yang, L.; Zoltan, M.; Stuegeon, R. E., 2003. Determination of methylmercury in fish tissues by isotope dilution SPME-GC-ICP-MS. J. Anal. At. Spectrom. 18, 431-436.

Zoltan, M.; Joseph, L.; Ralph, S.; Janusz, P., 2000. Determination of methylmercury by soild-phase microextraction inductively coupled plasma mess spectrometry: a new sample introduction method for volatile metal species. J. Anal. At. Spectrom. 15, 837-842.

陳石松,2004,魚類中有機汞物種和重金屬暨貝類中有機錫物種和重金屬之含量檢測,國立臺灣海洋大學博士論文。

李俊璋、王應然、孫逸民、田倩蓉、謝佳褘、蔡逸婷、許鴻獅、鋁紹宏,2004,毒性化學物質環境流布調查分析計畫,行政院環境保護署。

中央研究院,2005,台灣魚類資料庫。

中石化安順廠污染調查結果說明,2005,行政院環境保護署。

中石化安順廠區外污染調查成果,2005,行政院環境保護署。

Forese, R. and Pauly, D., 2005. Fishbase.

中石化安順廠污染專題網站
http://ww2.epa.gov.tw/SoilGW/D001/part1-4.htm

U.S. National Library of Medicine, Toxnet.
http://toxnet.nlm.nih.gov/

U.S. Environmental Protection Agency, Mercury.
http://www.epa.gov/mercury/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 彭心儀,2004。「論WTO爭端解決程序下之「法庭之友」介入問題」,政大法學評論,80:291-344。
2. 郭美懿,2000。「從1996年美國電信自由化看臺灣固網商機」,通訊雜誌,76:36-39。
3. 張興華,2004。「台灣第三代行動通訊業務執照發放政策之經濟分析」,管理評論,23(3):71-92。
4. 張世潔,1997,1月。「審議與競標優劣之評議」,通訊雜誌,36。
5. 林淑馨,2004。「電信事業的自由化、民營化對普及服務供給之影響:以中華電信為例」,東吳政治學報,18:69-109。
6. 林晨,2004,9月。「資本民主夢踏出第一步,6歲Google挑戰百年華爾街」,數位時代雙週。
7. 周韻采,2003,12月。「頻譜核釋與制度:財產權與公信力的實證研究」,政治科學論叢,19:203-224頁。
8. 李煥仁,1997。「從加入世界貿易組織觀點談國內電信自由化」,經濟情勢暨評論,3(2):29-37。
9. 李秋薇,1998,10月 。「電信自由化發展比較與借鏡」,通訊雜誌,57。
10. 李欣欣,1998。「WTO電信協定與市場發展」,通訊雜誌,54:28-32。
11. 何定為,1996,12月「台灣行動電話產業走勢分析」,通訊雜誌,35。
12. 彭慧鸞,1999。「日本電信自由化的制度調適之研析」,問題與研究月刊,38(5):61-76。
13. 彭慧鸞,2001。「電信自由化建制與數位落差的政治經濟分析」,問題與研究,40(4):25-40頁。
14. 黃紫華,1996。「日本電信政策鬆綁之殷鑑」,臺灣經濟研究月刊,19(10):37-42。
15. 虞孝成、李宗耀,2002。「台灣3G頻率執照發放政策規劃與討論」,科技管理學刊,7(1):1-17。