跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳祖儀
研究生(外文):Tsu-Yi Chen
論文名稱:頸椎肌肉力量模擬測試機台之設計
論文名稱(外文):Design of a cervical spine testing apparatus with muscle force replication
指導教授:王兆麟
指導教授(外文):Jaw-Lin Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:43
中文關鍵詞:生物力學肌肉模擬中性區活動度
外文關鍵詞:biomechanicsmuscle simulationneutral zonerange of motion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
前言. 肌肉組織對於脊椎穩定性有很大的影響。但由於在離體實驗中不易模擬肌肉作用,探討肌肉功能對脊椎穩定度的文獻相對有限。過去的研究亦缺乏討論頸部肌肉對於整節頸椎的影響。因此本研究的目的為:架設一肌肉模擬系統測試平台,並藉此探討頸部肌肉收縮作用對整節頸椎穩定度的影響。在實驗中所量測的參數有頸椎活動度(Range of motion, ROM) 、中性區(Neutral zone, NZ),以及頸椎的力學行為。
材料與方法. 脊椎肌肉力量模擬測試機台,可測試單節或多節脊椎運動單元。機台可利用滾輪夾具及滑輪系統,對試樣產生不連續的純彎矩負載,以及利用氣壓缸產生拉力負載,以模擬肌肉拉力。實驗部分,我們選用七隻豬的整節頸椎試樣(C2-T1)為試樣,對試樣施予對稱的肌肉拉力,我們模擬的肌肉有胸鎖乳突肌(Sternocleidomastoid)、半棘肌(Semispinalis capitis),以及夾肌(Splenius capitis),給定肌肉力量分別為15N、5N、5N。當脊椎在屈曲姿勢和後仰姿勢下受到0.5Nm、1Nm、2 Nm的純彎矩負載時,我們分二種情況討論:Ⅰ、比較無肌肉拉力和全部肌肉同時作用的差異,以探討全部肌肉一起作用對頸椎穩定度的影響;Ⅱ、探討各別肌肉不作用時對頸椎穩定度的影響。
結果. 在不同肌肉模擬條件下,都會對C7-T1椎間盤產生軸向力,當全部肌肉同時作用產生的軸向力最大,當沒有肌作用產生的軸向力最小,而其餘肌肉作用條件下則介於兩者間。屈曲後仰方向的力矩在全部肌肉同時作用、向後拉的夾肌及半棘肌不作用三種情況下,則會對椎間盤產生屈曲方向的力矩。而當向前拉的胸鎖乳突肌不作用時,會則產生後仰方向的力矩。當我們對試樣施予屈曲方向的彎矩負載,則椎間盤量得力矩會往屈曲方向增加,而施予後仰方向的彎矩負載,則椎間盤量得力矩會往後仰方向增加;但左右方向的力量、左右側邊彎曲方向的力矩及軸向方向旋軸的力矩值不會隨肌肉拉力及純彎矩負載變化而改變。
肌肉拉力及純彎矩負載對整節頸椎試樣的運動分析,中性區、活動度會因為肌肉拉力作用而減少,但對於中性區比例(NZR)沒有明顯變化,而且在各肌肉作用條件下,中性區減少百分比會大於活動度減少百分比。

結論. 我們已初步架構一脊椎肌肉模擬測試機台,能對脊椎試樣所施予外部負載可為純彎矩負載或拉力負載,配合肌肉拉力的模擬,探討不同的外部負載及肌肉拉力作用對脊椎的力學行為,以及脊椎整體的運動分析。在實驗部分,結果發現頸部肌肉作用時,雖然造成C7-T1的椎間盤的軸向力增加,但同時亦對於整節頸椎的穩定度有正面的幫助,顯示肌肉功能的重要性。
Abstract
Objective. To investigate the effect of neck muscles on the stability of cervical spines subjected to the external flexion/extension moment by evaluating neutral zone (NZ) and range of motion (ROM) of the cervical spines.

Methods. Seven porcine cervical spines (C2-T1) were dissected to serve as specimens. A muscle simulation apparatus was developed to simulate the contraction force of neck muscle pairs, including sternocleidomastoid (SCM), semispinalis captis, and splenius captis. Cables representing the corresponding muscles were connected to the pneumatic cylinders, providing forces of 15N for sternocleidomastoid, and 5N for semispinalis captis and splenius captis, respectively. Neutral zone (NZ) was measured when the specimens returned steady after being slightly disturbed without external moment. Range of motion (ROM) was measured after each specimen was loaded with flexion / extension moment of 0.5Nm, 1Nm, and 2Nm sequentially. In each loading condition, the following cases were investigated: all muscle pairs contracted, only one muscle pair dysfunctioned, and all muscle pairs dysfunctioned.

Results. Both of NZ and ROM decreased with the increase in the number of contracting muscle pairs. The proportion of the reduction of NZ was significantly greater that that of ROM. However, the ratio between NZ and ROM didn’t vary significantly among cases. Both NZ and ROM measured in the case that all muscle pairs contracted were significantly smaller than those measured in the case that all muscle pairs dysfunctioned. Difference in NZ wasn’t found between the case in which all muscle pairs contracted and the case in which only one muscle pair dysfunctioned. However, the same comparison for ROM revealed different results.

Conclusion. The present study supports that NZ is a better index for spinal stability than ROM since it is more sensitivity to the change in muscle contraction and external loading. The present study also proves that the ventral and dorsal neck muscle pairs significantly contribute to the stability of cervical spine when it is subjected to the external load.
目錄
第一章 序論 1
1-1前言 1
1-2脊椎之基本構造 1
1-3頸部肌肉介紹 6
1-4文獻回顧 9
1-4-1脊椎穩定度 9
1-4-2離體實驗測試機台 11
1-4-3脊椎肌肉模擬相關文獻 12
1-5 研究目的 13
第二章 實驗設備簡介 14
2-1肌肉模擬系統的主要功能 14
2-2系統架構 14
2-2-1肌肉模擬測試機台 15
2-2-2頸部肌肉模擬 18
2-2-3試樣固定位置平移及訊號處理 20
2-2-4運動分析 22
第三章 材料與方法 25
3-1實驗材料 25
3-2試樣準備流程 26
3-2-1解剖階段 26
3-2-2包埋階段 26
3-2-3實驗與保存階段 27
3-3實驗設計 27
第四章 實驗結果 30
4-1整節椎體的運動分析 30
4-1-1位移負載曲線圖 30
4-1-2 中性區(NZ)、活動度(ROM)及中性區比例(NZR) 30
4-1-3 中性區(NZ)減少百分比、活動度(ROM)減少百分比 31
4-2肌肉拉力對第七頸椎到第一胸椎間的椎間盤之受力分析 32
4-2-1肌肉拉力的影響 32
4-2-2肌肉拉力配合純彎矩負載的影響 34
第五章 討論 38
第六章 結論與未來展望 41
6-1結論 41
6-2未來展望 41
參考文獻 42


圖目錄
圖1- 1脊椎結構圖 2
圖1- 2典型頸椎(第四頸椎為例) 3
圖1- 3寰椎與軸椎 3
圖1- 4椎間盤結構 4
圖1- 5脊椎運動方向座標系統定義示意圖 5
圖1- 6 第四頸椎到第七頸椎(C4-C7)側視圖 5
圖1- 7移動頭部的肌肉 6
圖1- 8胸鎖乳突肌(SCM)解剖位置 7
圖1- 9半棘肌(SSC)解剖位置 7
圖1- 10夾肌(SPL)解剖位置 8
圖1- 11位移負載曲線11 9
圖1- 12側向支撐線(GUY WIRE) 示意圖 10
圖1- 13負載位移曲線 11
圖1- 14以湯碗外形表示穩定度 11
圖2- 1肌肉模擬測試機台整體架構 14
圖2- 2肌肉模擬測試機台本體 15
圖2- 3夾具實體圖 16
圖2- 4外部負載示意圖 16
圖2- 5滑輪微調機構 17
圖2- 6球窩接頭功能示意圖 18
圖2- 7描繪各肌肉拉力走向 (圖A為前視圖,圖B為右側視圖) 19
圖2- 8模擬肌肉的鋼索走向及位置 20
圖2- 9試樣直接放置於6D測力元示意圖 21
圖2- 10試樣平移6D測力元放置示意圖 21
圖2- 11試樣位置平移對6D測力元量測影響 22
圖2- 12空間定位對照框 23
圖2- 13空間定位對照框擺放位置 24
圖3- 1豬頸椎前凸曲線圖 25
圖3- 2包埋補土模具的尺寸評估 26
圖3- 3實驗流程圖 28
圖3- 4 實驗試樣實體擺設圖 29
圖4- 1典型位移負載曲線圖 30
圖4- 2肌肉拉力對第七頸椎到第一胸椎間的椎間盤產生的力量反應 33
圖4- 3肌肉拉力對第七頸椎到第一胸椎間的椎間盤產生的力矩反應 34
圖4- 4肌肉拉力及純彎矩負載對第七頸椎到第一胸椎間的椎間盤前後方向(ANTERIO-POSTERIOR)軸向力量的反應 35
圖4- 5肌肉拉力及純彎矩負載對第七頸椎到第一胸椎間的椎間盤上下方向(SUPERIOR/INFERIOR)軸向力的反應 36
圖4- 6肌肉拉力及純彎矩負載對第七頸椎到第一胸椎間的椎間盤屈曲後仰(FLEXION/EXTENSION)方向的力矩反應 37


表目錄
表1- 1各肌肉收縮產生動作表 8
表2- 1肌肉附著骨骼解剖位置 19
表3- 1實驗參數設定表 27
表4- 1中性區、活動度、中性區比例量測分析 31
表4- 2中性區減少百分比、活動度減少百分比分析 32
表4- 3肌肉拉力對第七頸椎到第一胸椎間的椎間盤產生的力量反應 33
表4- 4肌肉拉力對第七頸椎到第一胸椎間的椎間盤產生的力矩反應 34
參考文獻
1.Bernhardt P. WHJ, Wenger K. H., Jungkunz B., Bohm A., Claes L. E. Multiple muscle force simulation in axial rotation of the cervical spine. Clin Biomech 1999;14:32-40.
2.Darrell J. Goertzen CL, Thomas R. Oxland. Neutral Zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocal. A in vitro porcine investigation. Journal of Biomechanics 2004:257-61.
3.El-Bohy AA YK-H, King AI. Experimental verification of facet load transmission by direct measurements of facet lamina contact pressure. J Biomech 1989:931-41.
4.H. J. Wilke AR, S. Neller, F. Graichen, L. Claes, and G. Bergmann. A novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements. 2003;28:2585-93.
5.H. J. Wilke LC, H. Schmitt, and S. Wolf. A universal spine tester for in vitro experiments with muscle force simulation. European Spine Journal 1994;3:91-7.
6.Hans-Joachim Wilke SW, Lutz E. Claes, Markus Arand, Alexander Wiesend. Stability Increase of the Lumbar Spine With Different Muscle Groups. SPINE 1995;20:192-8.
7.Keith L. Moore AFD. Clinically oriented anatomyed.
8.Kettler A. HE, Schultheiss M., Claes L., Wilke H. J. Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens. J Biomech. 2002;35:339-46.
9.M. Mimura MMP, T. R. Oxland, J. J. Crisco, I. Yamamoto, A.Vasavada. Disc Degeneration Affects the Multidirectional Flexibility of the Lumbar Spine. SPINE 1994;19:1371-80.
10.MANOHAR M P, Joseph J. Crisco, Anita Vasavada, Takenori Oda, Jacek Cholewicki, Kimio Nibu, Eon Shin. Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves. 2001;26:2692-700.
11.MANOHAR PANJABI KA, JOANNE DURANCEAU, THOMAS OXLAND. Spinal stability and intersegmental muscle forces. A biomechanical model. Spine 1989;14:194-200.
12.Margareta Nordin VHF. Basic Biomechanics of The Musculoskeletal Systemed, 2003.
13.McGill SM. Low Back Stability: From Formal Description to Issues for Performance and Rehabilitation. Exerc. Sport Sci. Rev. 2001;29:26-31.
14.Moroney SP SA, Miller JAA, et al. Load-displacement properties of lower cervical spine motion segments. J Biomech 1988:769-79.
15.PANJABI MM. Biomechanical Evaluation of Spinal Fixation Devices: Ⅰ、A Conceptual Framework. Spine 1988;13:1129-34.
16.Panjabi MM. Clinical spinal instability and low back pain. Journal of Electromyography and Kinesiology 2003;13:371-9.
17.Panjabi MM BR, White AA. Mechanical properties of the human thoracic spine. J Bone Joint Surg [Am] 1976:642-52.
18.Panjabi MM SD, Pelker RR, et al. Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 1986:152-61.
19.Platzer W. Locomotor System. 4 ed, 1992.
20.Stuart M. McGill SG, Natasa Kavcic, Jacek Cholewicki. Coordination of muscle activity to assure stability of the lumbar spine. Journal of Electromyography and Kinesiology 2003;13:353-9.
21.Vasavada AN, Li, Siping, Delp, Scott L. Influence of Muscle Morphometry and Moment Arms on the Moment-Generating Capacity of Human Neck Muscles[Biodynamics]. spine 1998;23:412-22.
22.Wilke H. J. WS, Claes L. E., Arand M., Wiesend A. Influence of varying muscle forces on lumbar Intradiscal pressure: an in vitro study. J. Biomech. 1996;29:549-55.
23.游祥明、宋晏仁、古宏海、傅毓秀、林光華. 解剖學ed: 華杏機構叢書.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊