跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉雅雯
研究生(外文):Ya-Wen Liu
論文名稱:酵母菌第一腺嘌呤核苷二磷酸核醣化因子相似蛋白的功能性探討
論文名稱(外文):Functional Characterization of ADP-RibosylationFactor-Like Protein 1 in Saccharomyces cerevisiae
指導教授:李芳仁
指導教授(外文):Fang-Jen S. Lee
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:116
中文關鍵詞:腺嘌呤核苷二磷酸核醣化因子 囊泡運輸
外文關鍵詞:ARF vesicular trafficking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腺嘌呤核苷二磷酸核醣化因子(ADP-ribosylation factor, ARF)為Ras致癌基因蛋白家族的一支,屬於鳥糞嘌呤核苷三磷酸結合蛋白的一種。在各種不同的真核生物都有ARF家族成員的分布,負責著細胞內的囊泡運輸、磷脂酶的活化、參與磷脂三激酶的訊息調控等等的功能。ARF家族成員可分為ARF與ARF-相似蛋白(ARL)兩大類。目前雖然已知有許多ARL的存在但對其功能卻仍幾乎是一無所知。本文利用酵母菌為模式研究ARL1蛋白在細胞中所扮演的角色。利用螢光染色法,我們發現ARL1蛋白分布在高基氏體上,並利用酵母菌雙雜合篩選法找出與Arl1p蛋白直接作用的蛋白質Imh1p以及Gcs1p。從接下來的功能性探討,我們證明了Imh1p是Arl1p的下游作用基因受其調控,而Gcs1p 是Arl1p的上游調控者會活化其鳥糞嘌呤核苷三磷酸水解能力並繼而影響Arl1p在細胞中的分布。另外,在囊泡運輸路徑的研究中,我們發現ARL1蛋白會參與在醣基化磷脂醯肌醇(glycosylphosphatidylinositol) 連結蛋白Gas1p從高基氏體到細胞膜的運送。無論是ARL1蛋白的上游調控基因或下游作用基因都會影響Gas1p。因此,我們的研究發現了部份ARL1蛋白的結合蛋白及其結合功能以及Arl1p在酵母菌中所參與的囊泡運輸路徑。進一步分析與探討其他與其作用的蛋白質將會使我們對囊泡運輸的分子機轉有更深一層的了解。
ADP-ribosylation factors (ARFs) are highly conserved small GTP-binding proteins that enhance the ADP-ribosyltransferase activity of cholera toxin and have an important role in vesicular transport. Several ARF-like proteins (ARLs) have been cloned from different organisms but the biological functions of ARLs remain largely unknown. In this dissertation, an ARL protein, Arl1p, of yeast Saccharomyces cerevisiae was characterized. Yeast ARL1 encodes a protein that is structurally related to human, rat, and Drosophila ARL1 proteins. Here we identified two interacting proteins of Arl1p, Imh1p and Gcs1p, the former is a tethering factor and the latter is an ARFGAP. From several in vitro and in vivo analysis, we demonstrated that Imh1p is a downstream effector of Arl1p and is recruited by the proper protein-protein interaction; on the other hand, Gcs1p exhibits GAP activity toward Arl1p and is able to regulate subcellular localization of Arl1p thus indicates that Gcs1p is a GAP for Arl1p. To the functional analysis, we found that Arl1p is involved in the anterograde transport from the Golgi to cell surface of the glycosylphosphatidylinositol (GPI)-anchored plasma membrane-resident protein Gas1p, but not those cell wall-localized GPI-anchored proteins Crh1p, Crh2p, and Cwp1p, or non-GPI-anchored plasma membrane-protein Gap1p. We also show that regulators of Arl1p: Sys1p, Arl3p, and Gcs1p; and effector Imh1p, all participate in the transport of Gas1p. From these results, not only the first ARL GAP is identified, but the first endogenous cargo molecule of yeast Arl1p is defined.
Abstract---------------------------------------------------4
中文摘要---------------------------------------------------5
Abbreviations----------------------------------------------6
Introduction-----------------------------------------------7
Materials and Methods-------------------------------------20
Results
I. Localization of Arl1p--------------------------------39
II. Interacting proteins of Arl1p-----------------------40
III. Functions of Arl1p in vesicular transport----------46
Discussion------------------------------------------------56
Tables
Table 1. Yeast strains used in this study--------------66
Table 2. Primers used in this study--------------------67
Figures
Figure 1. Regulation of ARF activity by GEPs and GAPs ----70
Figure 2. Structure of ARF1 ------------------------------71
Figure 3. ARFGAP sequence and structure of the ARF1t-ARFGAP
complex-----------------------------------------72
Figure 4. Model for general mechanism of transport vesicle
budding-----------------------------------------73
Figure 5. Pathway of Arl1p recruitment to Golgi membranes-74
Figure 6. Arl1p partially colocalizes with GFP-Sft2p------75
Figure 7. Localization of Arl1p on trans-Golgi is nucleotide
dependent---------------------------------------76
Figure 8. Interaction of ARLs or ARFs with Imh1p----------77
Figure 9. In vitro and in vivo interactions of Arl1p and
Imh1p-------------------------------------------78
Figure 10. Arl1p is required for the Golgi association of
Imh1p------------------------------------------79
Figure 11.Interaction of Arl1Q72Ld17N with Gcs1p in
two-hybrid assay--------------------------------80
Figure 12. Arl1p interacts with Gcs1p in vitro and in vivo81
Figure 13. GAP activity of Gcs1p for Arl1p in vitro-------82
Figure 14. More Arl1p is present in late Golgi of gcs1 mutant
than in wild type cells------------------------83
Figure 15. More Arl1-mRFP is present in late Golgi of gcs1
mutant than wild type--------------------------84
Figure 16. Overexpression of Gcs1-myc caused dissociation of
endogenous Arl1p from trans-Golgi--------------85
Figure 17. Overexpression of Gcs1-GFP, but not Gcs1-zn-GFP,
caused dissociation of endogenous Arl1p from
trans-Golgi------------------------------------86
Figure 18. GFP-Imh1p substantially loses its Golgi
association in arl1- and gcs1-null cells-------87
Figure 19. Constitutive active and inactive mutant forms of
Arl1p did not complement the loss of Arl1p-----88
Figure 20. Arl1p is not directly involved in the recycling of
GFP-Snc1p and the processing of vacuolar proteins
-----------------------------------------------89
Figure 21. Arl1p is required for the surface targeting of
GFP-GPI (Gas1p)--------------------------------90
Figure 22. Arl1p is involved in transport of Gas1p from the
late Golgi to plasma membrane -----------------91
Figure 23. Sys1p is involved in transport of Gas1p -------93
Figure 24. Over-expression of active Arl1p rescues Congo red
hyperseneitivity of arl3 mutant ---------------94
Figure 25. Subcellular distribution of endogenous Gas1p --95
Figure 26. Deletion of IMH1, but not YPT6, affects transport
of Gas1p to the plasma membrane----------------96
Figure 27. Arl1p regulates the integrity of the cell wall and
localization of Gas1p in a GTP-dependent manner97
Figure 28. Arl1Q72L localizes to the late Golgi in arl3
mutant-----------------------------------------99
Figure 29. The model for Arl1p activity-----------------100
Figure 30. The model for aberrant Arl1p activity --------101
Reference-------------------------------------------------102
Reference
Amor, J. C., Harrison, D. H., Kahn, R. A. and Ringe, D. (1994). Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704-708.

Amor, J. C., Horton, J. R., Zhu, X., Wang, Y., Sullards, C., Ringe, D., Cheng, X. and Kahn, R. A. (2001) Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases. J Biol Chem. 276, 42477-42484.

Antonny, B., Beraud-Dufour, S., Chardin, P. and Chabre, M. (1997a). N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675-4684.

Antonny, B., Huber, I., Paris, S., Chabre, M. and Cassel, D. (1997b). Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30848-30851.

Bagnat, M., Keranen, S., Shevchenko, A., Shevchenko, A. and Simons, K. (2000). Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA 97, 3254-3259.

Bagnat, M. and Simons, K. (2002). Cell surface polarization during yeast mating. Proc. Natl. Acad. Sci. USA 99, 14183-14188.

Bannykh, S. I., Nishimura, N. and Balch, W. E. (1998). Getting into the Golgi. Trends Cell Biol. 8, 21-25.

Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M. F., Ravazzola, M., Amherdt, M. and Schekman, R. (1994). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895-907.

Barlowe, C. (1998). COPII and selective export from the endoplasmic reticulum. Biochim. Biophys. Acta 1404, 67-76.

Behnia, R., Panic, B., Whyte, J. R. and Munro, S. (2004). Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat. Cell Biol. 6, 405-413.

Bensen, E. S., Yeung, B. G. and Payne, G. S. (2001). Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. Mol. Biol. Cell 12, 13-26.

Bigay, J., Pierre, G., Robineau, S., and Antonny, B. (2003). Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563-566.

Blader, I. J., Cope, M. J. T. V., Jackson, T. R., Profit, A. A., Greenwood, A. F., Drubin, D. G., Prestwich, G. D. and Theibert, A. B. (1999). GCS1, an Arf guanosine triphosphatase-activating protein in Saccharomyces cerevisiae, is required for normal actin cytoskeletal organization in vivo and stimulates actin polymerization in vitro. Mol. Biol. Cell 10, 581-596.

Bomsel, M. and Mostov, K. (1992). Role of heterotrimeric G proteins in membrane traffic. Mol Biol Cell 3, 1317-1328.

Bonangelino, C. J., Chavez, E. M., Bonifacino, J. S. (2002). Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell. 13,2486-501.

Bourne, H. R., Sanders, D. A. and McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.

Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C. and Sternweis, P. C. (1993). ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75, 1137-1144.

Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A. and Randazzo, P. A. (1998). ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell Biol. 18, 7038-7051.

Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C. L. and Chabre, M. (1996). A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-484.

Chatterjee, S. and Mayor, S. (2001). The GPI-anchor and protein sorting. Cell Mol. Life Sci. 58, 1969-1987.

Cockcroft, S., Thomas, G. M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O. and Hsuan, J. J. (1994). Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523-526.

Coe, J. G., Murray, L. E. and Dawes, I. W. (1994). Identification of a sporulation-specific promoter regulating divergent transcription of two novel sporulation genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 244, 661-672.

Cowles, C. R., Snyder, W. B., Burd, C. G. and Emr, S. D. (1997). Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J. 16, 2769-2782.

Cukierman, E., Huber, I., Rotman, M. and Cassel, D. (1995). The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999-2002.

D''Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D. and Van Aelst, L. (1997). A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445-5454.

Dascher, C. and Balch, W. E. (1994). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437-1448.

De Sampaio, G., Bourdineaud, J. P. and Lauquin, G. J. (1999). A constitutive role for GPI anchors in Saccharomyces cerevisiae: cell wall targeting. Mol. Microbiol. 34, 247-256.

Dielbandhoesing, S. K., Zhang, H., Caro, L. H., van der Vaart, J. M., Klis, F. M., Verrips, C. T. and Brul, S. (1998). Specific cell wall proteins confer resistance to nisin upon yeast cells. Appl. Environ. Microbiol. 64, 4047-4052.

Doering, T.L. and Schekman, R. (1996). GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J. 15, 182-191.

Dogic, D., de Chassey, B., Pick, E., Cassel, D., Lefkir, Y., Hennecke, S., Cosson, P., and Letourneur, F. (1999). The ADP-ribosylation factor GTPase-activating protein Glo3p is involved in ER retrieval. Eur. J. Cell Biol. 78, 305-310.

Donaldson, J. G. and Jackson, C. L. (2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475-482.

Eugster, A., Frigerio, G., Dale, M., and Rainer, D. (2000). COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905-3917.

Ferro-Novick, S. and Novick, P. (1993). The role of GTP-binding proteins in transport along the exocytic pathway. Annu Rev Cell Biol 9, 575-599.

Filipak, M., Drebot, M. A., Ireland, L. S., Singer, R. A., and Johnston, G. C. (1992). Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase. Curr. Genet. 22, 471–477.

Franco, M., Paris, S. and Chabre, M. (1995). The small G-protein ARF1GDP binds to the Gt beta gamma subunit of transducin, but not to Gt alpha GDP-Gt beta gamma. FEBS Lett. 362, 286-290.

Franco, M., Peters, P. J., Boretto, J., van Donselaar, E., Neri, A., D''Souza-Schorey, C. and Chavrier, P. (1999). EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 18, 1480-1491.

Frank, S. R., Hatfield, J. C. and Casanova, J. E. (1998). Remodeling of the actin cytoskeleton is coordinately regulated by protein kinase C and the ADP-ribosylation factor nucleotide exchange factor ARNO. Mol. Biol. Cell 9, 3133-3146.

Gaynor, E. C., Chen, C. Y., Emr, S. D. and Graham, T. R. (1998). ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol. Biol. Cell 9, 653-670.

Giets, R. D., and Sugino, A. (1988). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74, 527–534.

Goldberg, J. (1999). Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893-902.

Golemis, E. A. and Khazak, V. (1997). Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol. Biol. 63, 197-218.

Graham, T. R. (2004). Membrane targeting: getting Arl to the Golgi. Curr. Biol. 14, R483-485.

Hamada, K., Fukuchi, S., Arisawa, M., Baba, M. and Kitada, K. (1998). Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol. Gen. Genet. 258, 53-59.

Harlow, E., and Lane, D. (1988). Antibodies: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor laboratory.

Herrmann, C., Martin, G. A. and Wittinghofer, A. (1995). Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901-2905.

Hirst, J. and Robinson, M. S. (1998). Clathrin and adaptors. Biochim. Biophys. Acta. 1404, 173-193.

Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A. (1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-532.

Huang, C. F., Chen, C. C., Tung, L., Buu, L. M. and Lee, F. J. (2002). The yeast ADP-ribosylation factor GAP, Gcs1p, is involved in maintenance of mitochondrial morphology. J. Cell Sci. 115,275-282.

Huang, C. F., Liu, Y. W., Tung, L., Lin, C. H. and Lee, F. J. (2003). Role for Arf3p in development of polarity, but not endocytosis, in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 3834-3847.

Huber, I., Cukierman, E., Rotman, M., Aoe, T., Hsu, V. W. and Cassel, D. (1998). Requirement for both the amino-terminal catalytic domain and a noncatalytic domain for in vivo activity of ADP-ribosylation factor GTPase-activating protein. J. Biol. Chem. 273, 24786-24791.

Jackson, C. L. and Casanova, J. E. (2000). Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60-67.

Jackson, T. R., Brown, F. D., Nie, Z., Miura, K., Foroni, L., Sun, J., Hsu, V. W., Donaldson, J. G. and Randazzo, P. A. (2000). ACAPs are ARF6 GTPase- activating proteins that function in the cell periphery. J. Cell Biol. 151, 627-638.

Jacques, K. M., Nie, Z., Stauffer, S., Hirsch, D. S., Chen, L. X., Stanley, K. T., and Randazzo, P. A. (2002). Arf1 disassociates from the clathrin adaptor GGA prior to being inactivated by Arf GTPase-activating proteins. J. Biol. Chem. 277, 47235–47241.

Jochum, A., Jackson, D., Schwarz, H., Pipkorn, R. and Singer-Kruger, B. (2002). Yeast Ysl2p, homologous to Sec7 domain guanine nucleotide exchange factors, functions in endocytosis and maintenance of vacuole integrity and interacts with the Arf-Like small GTPase Arl1p. Mol. Cell Biol. 22, 4914-4928.


Kahn, R. A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C., Clark, J., Amherdt, M., Roller, P., Orci, L. and Rothman, J. E. (1992). The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J. Biol. Chem. 267, 13039-13046.

Kahn, R. A., Cherfils, J., Elias, M., Lovering, R. C., Munro, S. and Schurmann, A. (2006) Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J. Cell Biol. 172, 645-650.

Kakinuma, T., Ichikawa, H., Tsukada, Y., Nakamura, T. and Toh, B. H. (2004). Interaction between p230 and MACF1 is associated with transport of a glycosylphosphatidyl inositol-anchored protein from the Golgi to the cell periphery. Exp. Cell Res. 298, 388-398.

Kirchhausen, T. (1999). Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705-732.

Klausner, R. D., Donaldson, J. G. and Lippincott-Schwartz, J. (1992). Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116, 1071-1080.

Kopecka, M. and Gabriel, M. (1992). The influence of congo red on the cell wall and (1----3)-beta-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch. Microbiol. 158, 115-126.

Kubler, E., Dohlman, H. G. and Lisanti, M. P. (1996). Identification of Triton X-100 insoluble membrane domains in the yeast Saccharomyces cerevisiae. Lipid requirements for targeting of heterotrimeric G-protein subunits. J. Biol. Chem. 271, 32975-32980.

Lee, F. J., Huang, C. F., Yu, W. L., Buu, L. M., Lin, C. Y., Huang, M. C., Moss, J. and Vaughan, M. (1997) Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J. Biol Chem. 272, 30998-31005.

Lee, S. Y., Yang, J. S., Hong, W., Premont, R. T., and Hsu, V. W. (2005). ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J. Cell Biol. 168, 281–290.
Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H. and Pelham, H. R. (2000). Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23-38.

Li, Y., Kelly, W. G., Logsdon, J. M. Jr, Schurko, A. M., Harfe, B. D., Hill-Harfe, K. L. and Kahn, R. A. (2004) Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans.
FASEB J. 18, 1834-1850.

Lippincott-Schwartz, J., Cole, N. B. and Donaldson, J. G. (1998). Building a secretory apparatus: role of ARF1/COPI in Golgi biogenesis and maintenance. Histochem. Cell. Biol. 109, 449-462.

Lock, J. G., Hammond, L. A., Houghton, F., Gleeson, P. A. and Stow, J. L. (2005). E-Cadherin Transport from the trans-Golgi Network in Tubulovesicular Carriers is Selectively Regulated by Golgin-97. Traffic 6, 1142-1156.

Lowe, S. L., Wong, S. H. and Hong, W. (1996) The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J. Cell Sci. 109, 209-220.

Lu L, Horstmann H, Ng C, Hong W. (2001) Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J. Cell Sci. 114, 4543-4555.

Lu, L., Tai, G. and Hong, W. (2004). Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol. Biol. Cell 15, 4426-4443.

Mayor, S. and Riezman, H. (2004). Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol. 5, 110-120.

Mitsui, K., Yaguchi, S. and Tsurugi, K.(1994). The GTS1 gene, which contains a Gly-Thr repeat, affects the timing of budding and cell size of the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 14, 5569-5578.

Mittal, R., Ahmadian, M. R., Goody, R. S. and Wittinghofer, A. (1996). Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115-117.

Morsomme, P., Prescianotto-Baschong, C. and Riezman, H. (2003). The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J. Cell Biol. 162, 403-412.

Moss, J. and Vaughan, M. (1998) Molecules in the ARF orbit. J Biol Chem. 273, 21431-21434.

Mouyna, I., Fontaine, T., Vai, M., Monod, M., Fonzi, W. A., Diaquin, M., Popolo, L., Hartland, R. P. and Latge, J. P. (2000). Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275, 14882-14889.

Muniz, M., Nuoffer, C., Hauri, H. P. and Riezman, H. (2000). The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148, 925-930.

Muniz, M., Morsomme, P. and Riezman, H. (2001). Protein sorting upon exit from the endoplasmic reticulum. Cell 104, 313-320.

Munro, S. (2005) The Arf-like GTPase Arl1 and its role in membrane traffic. Biochem Soc Trans. 33,601-605.

Nagel, W., Schilcher, P., Zeitlmann, L. and Kolanus, W. (1998). The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function. Mol Biol Cell 9, 1981-1994.

Otto-Bruc, A., Antonny, B., Vuong, T. M., Chardin, P. and Chabre, M. (1993). Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry 32, 8636-8645.

Pacheco-Rodriguez, G., Meacci, E., Vitale, N., Moss, J. and Vaughan, M. (1998). Guanine nucleotide exchange on ADP-ribosylation factors catalyzed by cytohesin-1 and its Sec7 domain. J. Biol. Chem. 273, 26543-26548.

Paladino S, Pocard T, Catino MA, Zurzolo C.(2006) GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. J Cell Biol. 172,1023-1034.

Panic, B., Whyte, J. R. and Munro, S. (2003a). The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405-410.

Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. (2003b) Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell. 12, 863-874.

Paris, S., Beraud-Dufour, S., Robineau, S., Bigay, J., Antonny, B., Chabre, M. and Chardin, P. (1997). Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor ARNO. J. Biol. Chem. 272, 22221-22226.

Pasqualato, S., Renault, L. and Cherfils, J. (2002) Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ''front-back'' communication. EMBO Rep. 3, 1035-1041.

Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J. and Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275-285.

Polishchuk, R., Di Pentima, A. and Lippincott-Schwartz, J. (2004). Delivery of raft-associated, GPI-anchored proteins to the apical surface of polarized MDCK cells by a transcytotic pathway. Nat. Cell Biol. 6, 297-307.

Poon, P. P., Wang, X., Rotman, M., Huber, I., Cukierman, E., Cassel, D., Singer, R. A., and Johnston, G. C. (1996). Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 93, 10074–10077.
Poon, P. P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R. A., and Johnston, G. C. (1999). Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J. 18, 555-564.

Poon , P. P., Nothwehr, S. F., Singer, R. A, and Johnston, G.C. (2001). The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network. J. Cell Biol. 155, 1239-50.

Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M. and Lefkowitz, R. J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082-14087.

Presley, J. F., Ward, T. H., Pfeifer, A. C, Siggia, E. D., Phair, R. D and Lippincott-Schwartz, J. (2002). Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187-193.

Price, S. R., Welsh, C. F., Haun, R. S., Stanley, S. J., Moss, J. and Vaughan, M. (1992). Effects of phospholipid and GTP on recombinant ADP-ribosylation factors (ARFs). Molecular basis for differences in requirements for activity of mammalian ARFs. J. Biol. Chem. 267, 17766-17772.

Price, H. P., Panethymitaki, C., Goulding, D. and Smith, D. F. (2005). Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J. Cell Sci. 118, 831-841.


Radhakrishna, H., Klausner, R. D. and Donaldson, J. G. (1996). Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134, 935-947.

Radhakrishna, H., Al-Awar, O., Khachikian, Z. and Donaldson, J. G. (1999). ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855-866.
Rittinger, K., Walker, P. A., Eccleston, J. F., Nurmahomed, K., Owen, D., Laue, E., Gamblin, S. J. and Smerdon, S. J. (1997a). Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693-697.

Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J. and Gamblin, S. J. (1997b). Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758-762.

Rodriguez-Pena, J. M., Cid, V. J., Arroyo, J. and Nombela, C. (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol. Cell Biol. 20, 3245-3255.

Rodriguez-Pena, J. M., Rodriguez, C., Alvarez, A., Nombela, C. and Arroyo, J. (2002). Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J. Cell Sci. 115, 2549-2558.

Rosenwald, A. G., Rhodes, M. A., Van Valkenburgh, H., Palanivel, V., Chapman, G., Boman, A., Zhang, C. J. and Kahn, R. A. (2002). ARL1 and membrane traffic in Saccharomyces cerevisiae. Yeast 19, 1039-1056.

Roth, M. G. (1999a). Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9, 174-179.

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Mannual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338.

Schekman, R. and Orci, L. (1996). Coat proteins and vesicle budding. Science 271, 1526-1533.

Schmid, S. L. and Damke, H. (1995). Coated vesicles: a diversity of form and function. FASEB J. 9, 1445-1453.

Schurmann, A., Breiner, M., Becker, W., Huppertz, C., Kainulainen, H., Kentrup, H. and Joost, H. G. (1994) Cloning of two novel ADP-ribosylation factor-like proteins and characterization of their differential expression in 3T3-L1 cells. J Biol Chem. 269, 15683-15688.

Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A. and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239-253.

Setty, S. R., Shin, M. E., Yoshino, A., Marks, M. S. and Burd, C. G. (2003). Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr. Biol. 13, 401-404.

Setty, S. R., Strochlic, T. I., Tong, A. H., Boone, C. and Burd, C. G. (2004). Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat. Cell Biol. 6, 414-419.

Seveau, S., Bierne, H., Giroux, S., Prevost, M. C. and Cossart, P. (2004). Role of lipid rafts in E-cadherin and HGF-R/Met--mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 166, 743-753.

Sewell, J. L. and Kahn, R. A. (1988). Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA 85, 4620-4624.

Skrzypek, M., Lester, R. L. and Dickson, R. C. (1997). Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae. J. Bacteriol. 179, 1513-1520.

Siniossoglou, S., Peak-Chew, S. Y. and Pelham, H. R. (2000). Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J. 19, 4885-4894.

Soetens, O., De Craene, J. O. and Andre, B. (2001). Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J. Biol. Chem. 276, 43949-43957.

Song, J., Khachikian, Z., Radhakrishna, H. and Donaldson, J. G. (1998). Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cel Sci. 111, 2257-2267.

Springer, S., Spang, A., and Schekman, R. (1999) A primer on vesicle budding.
Cell 97, 145-148.

Stearns, T., Kahn, R. A., Botstein, D. and Hoyt, M. A. (1990a). ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol. Cell. Biol. 10, 6690-6699.

Stearns, T., Willingham, M. C., Botstein, D. and Kahn, R. A. (1990b). ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl. Acad. Sci. USA 87, 1238-1242.

Sutterlin, C., Doering, T. L., Schimmoller, F., Schroder, S. and Riezman, H. (1997). Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J. Cell Sci. 110, 2703-2714.

Szafer, E., Pick, E., Rotman, M., Zuck, S. Huber, I., and Cassel, D. (2000). Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1. J. Biol. Chem. 275, 23615–23619.[

Takai, Y., Sasaki, T. and Matozaki, T. (2001). Small GTP-binding proteins. Physiol. Rev. 81, 153-208.

Tamkun, J. W., Kahn, R. A., Kissinger, M., Brizuela, B. J., Rulka, C., Scott, M. P. and Kennison, J. A. (1991) The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci U S A. 88, 3120-3124.

Tomishige, N., Noda, Y., Adachi, H., Shimoi, H., Takatsuki, A. and Yoda, K. (2003). Mutations that are synthetically lethal with a gas1Delta allele cause defects in the cell wall of Saccharomyces cerevisiae. Mol. Genet. Genomics 269, 562-573.

Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G. F., Brost, R. L. and Chang, M. et al. (2004). Global mapping of the yeast genetic interaction network. Science 303, 808-813.

Wang, X., Hoekstra, M. F., DeMaggio, A. J., Dhillon, N., Vancura, A., Kuret, J., Johnston, G. C., and Singer, R. A. (1996). Prenylated isoforms of yeast casein kinase I, including the novel Yck3p, suppress the gcs1 blockage of cell proliferation from stationary phase. Mol. Cell. Biol. 16, 5375–5385.

Yahara, N., Ueda, T., Sato, K. and Nakano, A. (2001). Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol. Biol. Cell 12, 221-238.

Zhang, Q., Calafat, J., Janssen, H. and Greenberg, S. (1999). ARF6 is required for growth factor- and Rac-mediated membrane ruffling in macrophages at a stage distal to Rac membrane targeting. Mol. Cell. Biol. 19, 8158-8168.

Zhang, C. J., Bowzard, J. B., Anido, A., and Kahn, R. A. (2003). Four ARF GAPs in Saccharomyces cerevisiae have both overlapping and distinct functions. Yeast. 20, 315-330.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top