跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉麗君
研究生(外文):Li-Chun Liu
論文名稱:Galectin-3在T細胞活化與凋亡之研究
論文名稱(外文):Role of Galectin-3 in T cell activation and apoptosis
指導教授:許秉寧許秉寧引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:免疫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:55
中文關鍵詞:活化與凋亡
外文關鍵詞:galectin-3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Galectin-3,為分子量31 kDa的蛋白質,是屬於beta-galectose-binding lectin家族的一員,能正向與負向地調節T細胞和巨噬細胞的免疫功能。Galectin-3主要分布於細胞質內,然而近期研究也在細胞核、細胞表面以及細胞外間質偵測到Galectin-3的表現,暗示此分子為多功能性蛋白質。目前有越來越多的研究證據指出Galectin-3會參與調節T細胞免疫功能和細胞凋亡。Galectin-3能正向和負向地調節T細胞反應,但是Galectin-3在T細胞活化和凋亡方面的角色仍舊不是很清楚。為了要研究Galectin-3對T細胞的作用,首先,我們分離人類T細胞,進一步去研究Galectin-3對T細胞活化的影響。我們證實當T細胞藉由anti-CD3抗體活化之後其Galectin-3的表現量會提高,而此增加表現的趨勢在核酸和蛋白質階層下都能觀察到。利用anti-CD3抗體引發T細胞活化的同時加入Galectin-3,能造成T細胞增生並引起細胞激素IFNγ和IL-4的分泌。自Galectin-3基因敲毀小鼠所分離出的splenocytes對anti-CD3抗體所產生的活化反應較差,而此缺失能藉由外加Galectin-3所修復。以上實驗指出Galectin-3具有調節T細胞活化之功能。Galectin-3除了能增強T細胞活化之外,外源性的Galectin-3也能引發細胞凋亡。為了進一步去探討Galectin-3在人類T細胞所引發的細胞凋亡,我們分離人類T細胞,進而去研究在不同的活化狀態之下以及不同的T細胞亞群之間對Galectin-3所引發的細胞凋亡的反應。我們的結果發現,活化狀態下的T細胞對Galectin-3所引發的細胞凋亡較靜止狀態下的T細胞表現比較高的抗性,暗指T細胞對Galectin-3所引發的細胞凋亡受活化狀態所調控。另外我們也證明CD8 T細胞比CD4 T細胞對Galectin-3所引發的細胞凋亡表現比較高的敏感性,而在CD45RA和CD45RO T細胞亞群之間沒有顯著差異,暗示naïve和memory T細胞對Galectin-3所引發的細胞凋亡感受性沒有差異。而Galectin-3所引發的細胞凋亡能藉由外加caspase 抑制劑所抑制。綜合實驗結果顯示Galectin-3的確在調節T細胞活化跟凋亡方面有重要的角色。
Galectin-3, a 31 kDa protein, belonging to the member of a growing family of beta – galactoside - binding lectin, positively and negatively regulates T cell immunity and macrophage function. Although Galectin-3 is predominantly located in the cytoplasm, it has also been detected in the nucleus, on the cell surface or in the extracellular environment, suggesting a multi-functionality of this molecule. There is growing evidence showing the involvement of galectin-3 in the regulation of T cell immune response and apoptosis. Galetin-3 can positively and negatively regulate T cell response. Role of galectin-3 in T cell activation and apoptosis is still not clear. In order to investigate the effects of galectin-3 in T cells, we isolated human T cells to study T cell activation in vitro. We demonstrated that the expression of galectin-3 is upregulated in primary human T cells when cells activated with anti-CD3 mAb in both real-time PCR and intracellular galectin-3 staining. The exposure of exogenous galectin-3 to primary human T cells enhanced proliferation response to immobilized anti-CD3. We further demonstrated that exogenous galectin-3 induced IFN-γ production during T cell activation. The splenocytes isolated from galectin-3 deficient mice impaired proliferation response to anti-CD3 and this defect can be restored by adding recombinant galectin-3, indicating that galectin-3 may play a role in T cell activation. In addition to induce T cell activation, exogenous galectin-3 is also able to induce apoptosis in resting T cells. For investigating role of galectin-3-induced apoptosis in human T cells, we isolated primary human T cells and study the response to exogenous galectin-3 in different activation states and T cell subsets. The results revealed that activated T cells were more resistant to galecin-3-induced apoptosis than resting T cells indicating that galectin-3-induced apoptosis is under regulation, depending on T cell activation states. We also demonstrated that CD8 T cells were more sensitive to galectin-3-induced apoptosis than CD4 T cells and there was no significant difference between CD45RO and CD45RA T cell subsets in galectin-3-induced cell apoptosis indicating that no significant difference between naïve and primary T cell subsets. Galectin-3-induced apoptosis could be inhibited by caspase inhibitors. In conclusion, these results suggest that galectin-3 may play an important role in T cell activation and apoptosis.
Abstract 2
中文摘要 4

Chapter Ⅰ. Introduction
Part Ⅰ. Structural characteristics of galectin-3 9
Part Ⅱ. Cell distribution of galectin-3 10
Part Ⅲ. Biological function of galectin-3 11
Part Ⅳ. Galecin-3 in immune response 12

Chapter Ⅱ. Aims of the study
Part Ⅰ. Involvement of galectin-3 in T cell activation 14
Part Ⅱ. Involvement of galectin-3 in T cell apoptosis 14

Chapter Ⅲ. Materials and Methods
Part Ⅰ. Materials
1. Cell Lines 16
2. Antibodies 16
3. Chemicals and reagents 16
4. Buffers 18
Part Ⅱ. Method
1. Galectin genes mRNA expression analysis by real-time PCR 18
2. Flow cytometry analysis
2.1 Surface marker staining 19
2.2 Intracellular galectin-3 staining 19
2.3 Annexin V staining 20
3. Human T cells analysis
3.1 Isolation of human T cells 20
3.2 Human T cells proliferation assay 20
4. Apoptosis assay 21
5. Cytokine production on human T cells 21

Chapter IV. Results
Part Ⅰ. After T cell activation, the mRNA level of Gal-1, Gal-3, Gal-9 is
upregulated 22
Part Ⅱ. Intracellular Galectin-3 is expressed in human resting T cell and
upregulated after T cell activation 22
Part Ⅲ. The absence of Galectin-3 decreases cell proliferation 23
Part Ⅳ. Stimulation of T cells by recombinant Galectin-3 23
Part Ⅴ. Galectin-3 induces T cell apoptosis 25

Chapter Ⅴ. Discussions
Part Ⅰ. The expression of galectin-3 was upregulated after T cell activation 27
Part Ⅱ. Adding exogenous galectin-3 in vitro enhances cell proliferation 28
Part Ⅲ. Galectin-3 induced cell apoptosis 30
Part Ⅳ. Conclusion 32

Reference 33

Figures
Figure 1. Expression of galectin family genes after T cell activation 41
Figure 2. Expression of surface and intracellular galectin-3 after T cell activation 42
Figure 3. Expression and purification of His-Tag galectin-3 protein 44
Figure 4. Impaired T cell proliferation to anti-CD3 Ab in galectin-3 deficient
cell 45
Figure 5. Exogenous recombinant galectin-3 could enhance T cell proliferation to
anti-CD3 47
Figure 6. Exogenous galectin-3 enhances IFNγ secretion by human T cells 48
Figure 7. Exogenous galectin-3 enhances IL-4 secretion by human T cells 49
Figure 8. Exogenous galectin-3 induces apoptosis in human Jurkat T cells 50
Figure 9. Human T cells were resistant to galectin-3-induced apoptosis after
activation by anti-CD3 mAb 51
Figure 10. CD8 T cells are more susceptible to exogenous galectin-3-induced
apoptosis 53
Figure 11. Galectin-3-incuced apoptosis was partially inhibited by pan-caspase inhibitor, z-VAD-fmk 55
Agrwal, N., Wang, J. L., and Voss, P. G. (1989). Carbohydrate-binding protein 35. Levels of transcription and mRNA accumulation in quiescent and proliferating cells. J Biol Chem 264, 17236-17242.

Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R., and Raz, A. (1997). Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57, 5272-5276.

Almkvist, J., Faldt, J., Dahlgren, C., Leffler, H., and Karlsson, A. (2001). Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun 69, 832-837.

Barondes, S. H., Castronovo, V., Cooper, D. N., Cummings, R. D., Drickamer, K., Feizi, T., Gitt, M. A., Hirabayashi, J., Hughes, C., Kasai, K., and et al. (1994). Galectins: a family of animal beta-galactoside-binding lectins. Cell 76, 597-598.

Bresalier, R. S., Mazurek, N., Sternberg, L. R., Byrd, J. C., Yunker, C. K., Nangia-Makker, P., and Raz, A. (1998). Metastasis of human colon cancer is altered by modifying expression of the beta-galactoside-binding protein galectin 3. Gastroenterology 115, 287-296.

Brognard, J., Clark, A. S., Ni, Y., and Dennis, P. A. (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61, 3986-3997.

Chabot, S., Kashio, Y., Seki, M., Shirato, Y., Nakamura, K., Nishi, N., Nakamura, T., Matsumoto, R., and Hirashima, M. (2002). Regulation of galectin-9 expression and release in Jurkat T cell line cells. Glycobiology 12, 111-118.

Cherayil, B. J., Weiner, S. J., and Pillai, S. (1989). The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med 170, 1959-1972.

Colnot, C., Ripoche, M. A., Milon, G., Montagutelli, X., Crocker, P. R., and Poirier, F. (1998). Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice. Immunology 94, 290-296.

Cooper, D. N. (2002). Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572, 209-231.

Cortegano, I., del Pozo, V., Cardaba, B., de Andres, B., Gallardo, S., del Amo, A., Arrieta, I., Jurado, A., Palomino, P., Liu, F. T., and Lahoz, C. (1998). Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol 161, 385-389.

Craig, S. S., Krishnaswamy, P., Irani, A. M., Kepley, C. L., Liu, F. T., and Schwartz, L. B. (1995). Immunoelectron microscopic localization of galectin-3, an IgE binding protein, in human mast cells and basophils. Anat Rec 242, 211-219.

Demetriou, M., Granovsky, M., Quaggin, S., and Dennis, J. W. (2001). Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733-739.

Dietz, A. B., Bulur, P. A., Knutson, G. J., Matasic, R., and Vuk-Pavlovic, S. (2000). Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem Biophys Res Commun 275, 731-738.

Drickamer, K., and Taylor, M. E. (1993). Biology of animal lectins. Annu Rev Cell Biol 9, 237-264.

Dumic, J., Dabelic, S., and Flogel, M. (2006). Galectin-3: An open-ended story. Biochim Biophys Acta.
Ellerhorst, J. A., Stephens, L. C., Nguyen, T., and Xu, X. C. (2002). Effects of galectin-3 expression on growth and tumorigenicity of the prostate cancer cell line LNCaP. Prostate 50, 64-70.

Fernandez, G. C., Ilarregui, J. M., Rubel, C. J., Toscano, M. A., Gomez, S. A., Beigier Bompadre, M., Isturiz, M. A., Rabinovich, G. A., and Palermo, M. S. (2005). Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: involvement of alternative MAPK pathways. Glycobiology 15, 519-527.

Feuk-Lagerstedt, E., Jordan, E. T., Leffler, H., Dahlgren, C., and Karlsson, A. (1999). Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J Immunol 163, 5592-5598.

Flotte, T. J., Springer, T. A., and Thorbecke, G. J. (1983). Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets. Am J Pathol 111, 112-124.

Frigeri, L. G., and Liu, F. T. (1992). Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol 148, 861-867.
Frigeri, L. G., Zuberi, R. I., and Liu, F. T. (1993). Epsilon BP, a beta-galactoside-binding animal lectin, recognizes IgE receptor (Fc epsilon RI) and activates mast cells. Biochemistry 32, 7644-7649.

Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R., Hogan, V., Inohara, H., Kagawa, S., and Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63, 8302-8311.

Gong, H. C., Honjo, Y., Nangia-Makker, P., Hogan, V., Mazurak, N., Bresalier, R. S., and Raz, A. (1999). The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res 59, 6239-6245.

Hebert, E., and Monsigny, M. (1993). Oncogenes and expression of endogenous lectins and glycoconjugates. Biol Cell 79, 97-109.

Hebert, E., and Monsigny, M. (1994). Galectin-3 mRNA level depends on transformation phenotype in ras-transformed NIH 3T3 cells. Biol Cell 81, 73-76.

Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E., et al. (2002). Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572, 232-254.

Hirabayashi, J., and Kasai, K. (1993). The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3, 297-304.

Ho, M. K., and Springer, T. A. (1982). Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol 128, 1221-1228.

Hsu, D. K., Hammes, S. R., Kuwabara, I., Greene, W. C., and Liu, F. T. (1996). Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 148, 1661-1670.

Hsu, D. K., Zuberi, R. I., and Liu, F. T. (1992). Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem 267, 14167-14174.

Hubert, M., Wang, S. Y., Wang, J. L., Seve, A. P., and Hubert, J. (1995). Intranuclear distribution of galectin-3 in mouse 3T3 fibroblasts: comparative analyses by immunofluorescence and immunoelectron microscopy. Exp Cell Res 220, 397-406.

Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H., and Leffler, H. (1993). L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem 268, 26712-26718.

Inohara, H., Akahani, S., and Raz, A. (1998). Galectin-3 stimulates cell proliferation. Exp Cell Res 245, 294-302.

Inohara, H., and Raz, A. (1995). Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion. Cancer Res 55, 3267-3271.

Jeng, K. C., Frigeri, L. G., and Liu, F. T. (1994). An endogenous lectin, galectin-3 (epsilon BP/Mac-2), potentiates IL-1 production by human monocytes. Immunol Lett 42, 113-116.

Joo, H. G., Goedegebuure, P. S., Sadanaga, N., Nagoshi, M., von Bernstorff, W., and Eberlein, T. J. (2001). Expression and function of galectin-3, a beta-galactoside-binding protein in activated T lymphocytes. J Leukoc Biol 69, 555-564.

Karlsson, A., Follin, P., Leffler, H., and Dahlgren, C. (1998). Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91, 3430-3438.

Kashio, Y., Nakamura, K., Abedin, M. J., Seki, M., Nishi, N., Yoshida, N., Nakamura, T., and Hirashima, M. (2003). Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol 170, 3631-3636.

Kasper, M., and Hughes, R. C. (1996). Immunocytochemical evidence for a modulation of galectin 3 (Mac-2), a carbohydrate binding protein, in pulmonary fibrosis. J Pathol 179, 309-316.

Krugluger, W., Frigeri, L. G., Lucas, T., Schmer, M., Forster, O., Liu, F. T., and Boltz-Nitulescu, G. (1997). Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription. Immunobiology 197, 97-109.

Kuwabara, I., Kuwabara, Y., Yang, R. Y., Schuler, M., Green, D. R., Zuraw, B. L., Hsu, D. K., and Liu, F. T. (2002). Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem 277, 3487-3497.

Kuwabara, I., and Liu, F. T. (1996). Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156, 3939-3944.

Lee, Y. J., Song, Y. K., Song, J. J., Siervo-Sassi, R. R., Kim, H. R., Li, L., Spitz, D. R., Lokshin, A., and Kim, J. H. (2003). Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Exp Cell Res 288, 21-34.

Liu, F. T. (2000). Galectins: a new family of regulators of inflammation. Clin Immunol 97, 79-88.

Lotz, M. M., Andrews, C. W., Jr., Korzelius, C. A., Lee, E. C., Steele, G. D., Jr., Clarke, A., and Mercurio, A. M. (1993). Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci U S A 90, 3466-3470.

Lukyanov, P., Furtak, V., and Ochieng, J. (2005). Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer. Biochem Biophys Res Commun 338, 1031-1036.

Maeda, N., Kawada, N., Seki, S., Arakawa, T., Ikeda, K., Iwao, H., Okuyama, H., Hirabayashi, J., Kasai, K., and Yoshizato, K. (2003). Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J Biol Chem 278, 18938-18944.

Mary, F., Moon, C., Venaille, T., Thomas, M. L., Mary, D., and Bernard, A. (1999). Modulation of TCR signaling by beta1 integrins: role of the tyrosine phosphatase SHP-1. Eur J Immunol 29, 3887-3897.

Matarrese, P., Tinari, N., Semeraro, M. L., Natoli, C., Iacobelli, S., and Malorni, W. (2000). Galectin-3 overexpression protects from cell damage and death by influencing mitochondrial homeostasis. FEBS Lett 473, 311-315.

Metzger, H. (1992). Transmembrane signaling: the joy of aggregation. J Immunol 149, 1477-1487.

Moon, B. K., Lee, Y. J., Battle, P., Jessup, J. M., Raz, A., and Kim, H. R. (2001). Galectin-3 protects human breast carcinoma cells against nitric oxide-induced apoptosis: implication of galectin-3 function during metastasis. Am J Pathol 159, 1055-1060.

Moutsatsos, I. K., Davis, J. M., and Wang, J. L. (1986). Endogenous lectins from cultured cells: subcellular localization of carbohydrate-binding protein 35 in 3T3 fibroblasts. J Cell Biol 102, 477-483.

Moutsatsos, I. K., Wade, M., Schindler, M., and Wang, J. L. (1987). Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci U S A 84, 6452-6456.
Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., and Raz, A. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry 33, 14109-14114.

Ochieng, J., Platt, D., Tait, L., Hogan, V., Raz, T., Carmi, P., and Raz, A. (1993). Structure-function relationship of a recombinant human galactoside-binding protein. Biochemistry 32, 4455-4460.

Oka, N., Nakahara, S., Takenaka, Y., Fukumori, T., Hogan, V., Kanayama, H. O., Yanagawa, T., and Raz, A. (2005). Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res 65, 7546-7553.

Raimond, J., Zimonjic, D. B., Mignon, C., Mattei, M., Popescu, N. C., Monsigny, M., and Legrand, A. (1997). Mapping of the galectin-3 gene (LGALS3) to human chromosome 14 at region 14q21-22. Mamm Genome 8, 706-707.

Raz, A., Meromsky, L., Zvibel, I., and Lotan, R. (1987). Transformation-related changes in the expression of endogenous cell lectins. Int J Cancer 39, 353-360.

Reinhold, U., Liu, L., Sesterhenn, J., and Abken, H. (1996). CD7-negative T cells represent a separate differentiation pathway in a subset of post-thymic helper T cells. Immunology 89, 391-396.

Saada, A., Reichert, F., and Rotshenker, S. (1996). Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol 133, 159-167.

Saal, I., Nagy, N., Lensch, M., Lohr, M., Manning, J. C., Decaestecker, C., Andre, S., Kiss, R., Salmon, I., and Gabius, H. J. (2005). Human galectin-2: expression profiling by RT-PCR/immunohistochemistry and its introduction as a histochemical tool for ligand localization. Histol Histopathol 20, 1191-1208.

Sano, H., Hsu, D. K., Apgar, J. R., Yu, L., Sharma, B. B., Kuwabara, I., Izui, S., and Liu, F. T. (2003). Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112, 389-397.

Sato, S., and Hughes, R. C. (1994). Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages. J Biol Chem 269, 4424-4430.

Sato, S., Ouellet, N., Pelletier, I., Simard, M., Rancourt, A., and Bergeron, M. G. (2002). Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168, 1813-1822.
Smetana, K., Holikova, Z., Klubal, R., Bovin, N. V., Dvorankova, B., Bartunkova, J., Liu, F. T., and Gabius, H. J. (1999). Coexpression of binding sites for A(B) histo-blood group trisaccharides with galectin-3 and Lag antigen in human Langerhans cells. J Leukoc Biol 66, 644-649.

Stillman, B. N., Hsu, D. K., Pang, M., Brewer, C. F., Johnson, P., Liu, F. T., and Baum, L. G. (2006). Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176, 778-789.

Sturm, A., Lensch, M., Andre, S., Kaltner, H., Wiedenmann, B., Rosewicz, S., Dignass, A. U., and Gabius, H. J. (2004). Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J Immunol 173, 3825-3837.

Truong, M. J., Gruart, V., Kusnierz, J. P., Papin, J. P., Loiseau, S., Capron, A., and Capron, M. (1993a). Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/epsilon BP) of the S-type lectin family: role in IgE-dependent activation. J Exp Med 177, 243-248.

Truong, M. J., Gruart, V., Liu, F. T., Prin, L., Capron, A., and Capron, M. (1993b). IgE-binding molecules (Mac-2/epsilon BP) expressed by human eosinophils. Implication in IgE-dependent eosinophil cytotoxicity. Eur J Immunol 23, 3230-3235.

Villa-Verde, D. M., Silva-Monteiro, E., Jasiulionis, M. G., Farias-De-Oliveira, D. A., Brentani, R. R., Savino, W., and Chammas, R. (2002). Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment. Eur J Immunol 32, 1434-1444.

Wang, J. L., Gray, R. M., Haudek, K. C., and Patterson, R. J. (2004). Nucleocytoplasmic lectins. Biochim Biophys Acta 1673, 75-93.

Wang, L., Friess, H., Zhu, Z., Frigeri, L., Zimmermann, A., Korc, M., Berberat, P. O., and Buchler, M. W. (2000). Galectin-1 and galectin-3 in chronic pancreatitis. Lab Invest 80, 1233-1241.

Wollenberg, A., de la Salle, H., Hanau, D., Liu, F. T., and Bieber, T. (1993). Human keratinocytes release the endogenous beta-galactoside-binding soluble lectin immunoglobulin E (IgE-binding protein) which binds to Langerhans cells where it modulates their binding capacity for IgE glycoforms. J Exp Med 178, 777-785.

Yamaoka, A., Kuwabara, I., Frigeri, L. G., and Liu, F. T. (1995). A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol 154, 3479-3487.

Yang, R. Y., Hsu, D. K., and Liu, F. T. (1996). Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93, 6737-6742.

Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R., and Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 277, 6852-6857.

Yu, F., Finley, R. L., Jr., Raz, A., and Kim, H. R. (2002). Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem 277, 15819-15827.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文