|
Agatsuma, T., Ogawa, H., Akasaka, K., Asai, A., Yamashita, Y., Mizukami, T., Akinaga, S., and Saitoh, Y. (2002) Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorg. Med. Chem. 10: 3445-54. Ashkenazi, A., Pai, R.C., Fong, S., Leung, S., Lawrnce, D.A., Marsters, S.A., Blackie, C., Chang, L., McMurtrey, A.E., Hebert, A., DeForge, L., Koumenis, I.L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z. and Schwall R.H. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104: 155-62. Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nat. Rev. Cancer 2: 420-30. Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., and Rosen, N. (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 277: 39858-66. Banerji, U., O''Donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Maloney, A., Raynaud, F., Campbell, M., Walton, M., Lakhani, S., Kaye, S., Workman, P., and Judson, I. (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 23: 4152-61. Batchelder, R.M., Wilson, W.R., Hay, M.P., and Denny, W.A. (1996) Oxygen dependence of the cytotoxicity of the enediyne anti-tumour anticiotic esperamicin A1. Br. J. Cancer Suppl. 27: S52-6. Belka C, Schmid B, Marini P, et al. (2001) Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 20: 2190–6. Blagosklonny, M.V., Toretsky, J., Bohen, S. and Neckers, L. (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Sci. USA 93: 8379-83. Broemer, M., Krappmann, D., and Scheidereit, C. (2004) Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene. 23: 5378-86. Brugge, J.S., Erikson, E. and Erikson, R.L. (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25: 363-72. Buncher J. (1999) HSP90 & Co. - a holding for folding. Trends Biochem. Sci. 24: 136-41. Chen, G., Cao, P. and Goeddel, D. V. (2002) TNF-induced recruitment and activation of the IκK complex require Cdc37 and Hsp90. Mol. Cell 9: 401-10. Chuntharapai, A., Dodge, K., Grimmer, K., Schroeder, K., Marsters, S.A., Koeppen, H., Ashkenazi, A., and Kim, K.J. (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol. 166: 4891-8. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., and Nardai, G. (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. Pharmacol. Ther. 79: 1129-68. Comerford, K.M., Wallace, T.J., Karhausen, J., Louis, N.A., Montalto, M.C., and Colgan, S.P. (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62: 3387-94. Cornford, P.A., Dodson, A.R., Parsons, K.F., Desmond, A.D., Woolfenden, A., Fordham, M., Neoptolemos, J.P., Ke, Y., and Foster, C.S. (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 60: 7099-105. Daniel PT, Wieder T, Sturm I, and Schulze-Osthoff K. (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15: 1022–32. de Candia, P., Solit, D.B., Giri, D., Brogi, E., Siegel, P.M., Olshen, A.B., Muller, W.J., Rosen, N., and Benezra, R. (2003) Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc. Natl. Acad. Sci. U S A. 100: 12337-42. Degli-Esposti, M.A., Smolak, P.J., Walczak, H., Waugh, J., Huang, C.P., DuBose, R.F., Goodwin, R.G., and Smith, C.A. (1997a) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186: 1165-70. Degli-Esposti, M.A., Dougall, W.C., Smolak, P.J., Waugh, J.Y., Smith, C.A., and Goodwin, R.G. (1997b) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity. 7: 813-20. Demidenko, Z.N., Vivo, C., Halicka, H.D., Li, C.J., Bhalla, K., Broude, E.V., and Blagoklonny, M.V. (2005) Pharmacological induction of Hsp70 protects apoptosis-prone cells from doxorubicin: comparison with caspase-inhibitor- and cycle-arrest-mediated cytoprotection. Cell Death Differ. 25: 1-8. Dempsey, P.W., Doyle, S.E., He J.Q., and Cheng, G. (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 14: 193- 209. Dhein, J., Daniel, P.T., Trauth, B.C., Oehm, A., Moller, P., and Krammer, P.H. (1992) Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J. Immunol. 149:.3166–73. Duncan. R.F. (2005) Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J. 272: 5244-56. Emery, J.G., McDonnell, P., Burke, M.B., Deen, K.C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E.R., Eichman, C., DiPrinzio, R., Dodds, R.A., James, I.E., Rosenberg, M., Lee, J.C., and Young, P.R. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273: 14363-7. Garnier, C., Lafitte, D., Tsvetkov, P.O., Barbier, P., Leclerc-Delvin, J., Millot, J.M., Briand, C., Makarov, A.A., Catelli, M.G., and Peyrot, V. (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem. 277: 12208-14. Guettouche, T., Boellmann, F., Lane, W.S., and Voellmy, R. (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6: 4. Guo, F., Sigua, C., Bali, P., George, P., Fiskus, W., Scuto, A., Annavarapu, S., Mouttaki, A., Sondarva, G., Wei, S., Wu, J., Djeu, J., and Bhalla, K. (2005) Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 103: 1246-55. Guo, Y., Guettouche, T., Fenna, M., Boellmann, F., Pratt, W.B., Toft, D.O., Smith, D.F., and Voellmy, R. (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276: 45791-9. Hansen, R.K., Oesterreich, S., Lemieux, P., Sarge, K.D., and Fuqua, S.A. (1997) Quercetin inhibits heat shock protein induction but no heat shock factor DNA-binding in human breast carcinoma cells. Biochem. Biophys. Res. Commun. 239: 851-6. Harris, A.L. (2002) Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2: 38-47. Hartl, F., (1996) Molecular chaperones in cellular protein folding. Nature 381: 571-80. He, Q., Lee, D. I., Rong, R., Yu, M., Luo, X., Klein, M., El-Deiry, W. S., Huang, Y., Hussain, A., and Sheikh, M. S. (2002) Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21: 2623-33. He, Q., Huang, Y., and Sheikh, M. S. (2004) Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and –deficient cells. Oncogene 23: 2554-8. Held, J. and Schulze-Osthoff, K. (2001) Potential and caveats of TRAIL in cancer therapy. Drug Resist Update 4: 243–52. Hockel, M. and Vaupel, P. (2001) Biological consequences of tumor hypoxia. Semin. Oncol. 28: 36-41. Holen, I., Croucher, P. I., Hamdy, F. C., and Eaton, C. L. (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res. 62: 1619-23. Hosokawa, N., Hirayoshi, K., Kudo, H., Takechi, H., Aoike, A., Kawai, K., and Nagata, K. (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol. Cell. Biol. 12: 3490-8. Hougardy, B.M., Maduro, J.H., van der Zee, A.G., de Groot, D.J., van den Heuvel, F.A., de Vries, E.G., and de Jong, S. (2006) Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis. Int. J. Cancer. 115: 1892-900. Hu, Y., and Mivechi, N.F. (2003) HSF-1 interacts with Ra1-binding protein 1 in a stress-responsive, multiprotein complex with HSP90 in vivo. J. Biol. Chem. 278: 17299-306. Huang, L.E. and Bunn, H.F. (2003) Hypoxia-inducible factor and its biomedical relevance. J. Biol. Chem. 278: 19575-8. Ikuina, Y., Amishiro, N., miyata, M., Narumi, H., Ogawa, H., Akiyama, T., Shiotsu, Y., Akinaga, S., and Murakata, C. (2003) Synthesis and antitumor activity of novel O-carbamoylmethyloxime derivatives of radicicol. J. Med. Chem. 46: 2534-41. Ichikawa, K., Liu, W., Zhao, L.,Wang, Z., Liu,, D.,Ohtsuka, T., Zhang, H., Mountz, J.D., Koopman, W.J., Kimberly, R.P., and Zhou, T. (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytoxicity. Nat. Med. 7: 954-60. Jia, W., Yu, C., Rahmani, M., Krystal, G., Sausville EA, Dent P et al. (2003) Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood 102: 1824-32. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M.F., Fritz, L.C., and Burrows, F.J. (1997) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 357-9. Kim, M., Park, S.Y., Pai, H.S., Kim, T.H., Billiar, T.R., and Seol, D.W. (2004) Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res. 64: 4078-81. Kim, J., Nueda, A., Meng, Y.H., Dynan, W.S., and Mivechi, N.F. (2005) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J. Cell. Biochem. 67: 43-54. Klettner A. (2004) The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drugs News Perspect. 17: 299-306. Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D., Mounho, B., Hillan, K., Totpal, K., DeForge, L., Schow, P., Hooley, J., Sherwood, S., Pai, R., Leung, S., Khan, L., Gliniak, B., Bussiere, J., Smith, C.A., Strom, S.S., Kelley, S., Fox, J.A., Thomas, D., and Ashkenazi, A. (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 7: 383-5. Lee, Y.S., Marcu, M.G., and Neckers, L. (2004) Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem. Biol. 11: 991-8. Lewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., and Liu, Z.G. (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J. Biol. Chem. 275: 10519-26. Ma, Y., Lakshmikanthan, V., Lewis, R.W., andKumar, M.V. (2006) Sensitization of TRAIL-resistant cells by inhibition of heat shock protein 90 with low-dose geldanamycin. Mol. Cancer Ther. 5: 170-8. MacFarlane, M., Ahmad, M., Srinivasula, S.M., Fernandes-Alnemri, T., Cohen, G.M., and Alnemri, E.S. (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J. Biol. Chem. 272: 25417-20. Marcu, M.G., Chardli, A., Bouhouche, I., Catelli, M., and Neckers, L.M. (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem. 275: 37181-6. Marsters, S.A., Sheridan, J.P., Pitti, R.M., Huang, A., Skubatch, M., Baldwin, D., Yuan, J., Gurney, A., Goddard, A.D., Godowski, P., and Ashkenazi, A. (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7: 1003-6. Morimoto, R.I. (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110: 281-4. Munster, P.N., Srethapakdi, M., Moasser, M.M., and Rosen, N. (2001) Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res. 61: 2945-52. Munster, P.N., Basso, A., Solit, D., Norton, L., and Rosen N. (2001) Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. Clin. Cancer Res. 7: 2228-36. Musio M. (1998) Signalling by proteolysis: death receptors induce apoptosis. Int. J. Clin. Lab. Res. 28:141-7. Nagane, M., Pan, G., Weddle, J.J., Dixit, V.M., Cavenee, W.K., and Huang, H.-J. S. (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60: 84753. Naka, T., Sugamura, K., Hylander, B., Widmer, M.B., Rustum, Y.M., and Repasky, E.A. (2002) Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors growth in SCID mice. Cancer Res. 62: 5800-6. Neckers, L. and Neckers, K. (2005) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics - an update. Expert Opin. Emerg. Drugs. 10: 137-49. Numahata, K., Komagata, T., Hirasawa, N., Someya, K., Xiao, Y.Q., and Ohuchi, K. (2003) Analysis of the mechanism regulating the stability of rat macrophage inflammatory protein-2 mRNA in RBL-2H3 cells. J Cell Biochem. 90: 976-86. Olsson, A., Diaz, T., Aguilar-Santelises, M., Osterborg, A., Celsing, F., Jondal, M., and Osorio, L.M. (2001) Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D. Leukemia. 15: 1868-77. Pan, G., O''Rourke, K., Chinnaiyan, A.M., Gentz, R., Ebner, R., Ni, J., and Dixit, V.M. (1997a) The receptor for the cytotoxic ligand TRAIL. Science 276: 111-3. Pan, G., Ni, J., Wei, Y.F., Yu, G., Gentz, R., and Dixit, V.M. (1997b) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815-8. Pan, G., Ni, J., Wei, Y. F., and Dixit, V. M.(1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signaling. FEBS Lett. 424: 41-5. Pitti, R.M., Marsters, S.A., Ruppert, S., Donahue, C.J., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271: 12687-90. Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228: 111-33. Prodromou, C., Roe, S.M., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pear, L.H. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65-75. Pugh, C.W. and Ratcliffe, P.J. (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9: 677-84. Rahmani, M., Yu, C., Dai, Y., Reese, E., Ahmed, W., Dent, P. et al. (2003) Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. 63: 8420-7. Roe, S.M., Prodromou, C., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42: 260-6. Sanchez, E.R., Toft, D.O., Schlesinger, M.J., and Pratt, W.B. (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J. Biol. Chem. 260: 12398-12401. Sato, S., Fujita, N., and Tsuruo, T. (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97: 10832-7. Sausville, E.A. (2001) Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Commentary re: P. Munster et al., Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner.Clin. Cancer Res. 7: 2228-36. Schulte, T.W. and Neckers, L.M. (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42: 273-9 Semenza, G.L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8: S62-7. Shaknovich, R., Shue, G., and Kohtz, D.S. (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol. Cell. Biol. 12: 5059-68. Sheikh, M.S., Huang, Y., Fernandez-Salas, E.A., El-Deiry, W.S., Friess, H., Amundson, S., Yin, J., Meltzer, S.J., Holbrook, N.J., and Fornacem, A.J. Jr. (1999) The antiapoptotic decoy receptor TRID and TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18: 4153-9. Sheridan, J.P., Marsters, S.A., Pitti, R.M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C.L., Baker, K., Wood, W.I., Goddard, A.D., Godowski, P., and Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818-21. Shi, R.X., Ong, C.N., and Shen, H.M. (2004) Luteolin sensitizes tumor necrosis factor-a-induced apoptosis in human tumor cells. Oncogene 23: 7712–21. Shu, C.W., Cheng, N.L., Chang, W.M., Tseng, T.L., and Lai, Y.K. (2005) Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J. Cell. Biochem. 94: 1199-209. Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T. et al. (1997) Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89: 309-19. Sittler, A., Lurz, R., Lueder, G., Priller, J., Lehrach, H., Hayer-Hartl, M.K., Hartl, F.U., and Wanker, E.E. (2001) Geldanamycin activates a heat shock response and inhibits hungtin aggregation in a cell culture model of Huntington’s disease. Hum. Mol. Genet. 10: 1307-15. Smith, D. F., Whitesell, L., Nair, S.C., Chen, S., Prapapanich, V., and Rimerman, R.A. (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol.Cell. Biol. 15: 6804-12. Soga, S., Kozawa, T., Narumi, H., Akinaga, S., Irie, K., Matsumoto, K., Sharma, S.V., Nakano, H., Mizukami, T., and Hara, M. (1998) Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway. J. Biol. Chem. 273: 822-8. Solit, D.B., Basso, A.D., Olshen, A.B., Scher, H.I., and Rosen N. (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res. 63: 2139-44. Soti, C., Racz, A., and Csermely, P. (2002) A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J. Biol. Chem. 277: 7066-75 Sreedhar, A.S. and Csermely, P. (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol. Ther. 101: 227-57. Stancato, L.F., Chow, Y.H., Owens-Grillo, J.K., Yem, A.W., Deibel, M.R.Jr, Jove, R., and Pratt, W.B. (1994) The native v-Raf.hsp90.p50 heterocomplex contains a novel immunophilin of the FK506 binding class. J. Biol. Chem. 269: 22157-61. Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., and Pavletich, N.P. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89: 239-50. Teicher, B.A., Kowal, C.D., Kennedy, K.A., and Sartorelli, A.C. (1981) Enhancement by hyperthermia of the in vitro cytotoxicity of mitomycin C toward hypoxic tumor cells. Cancer Res. 41: 1096-9. Truneh, A., Sharma, S., Silverman, C., Khandekar, S., Reddy, M. P., Deen, K. C., McLaughlin, M. M., Srinivasula, S. M., Livi, G. P., Marshall, L. A. et al. (2000) Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J. Biol. Chem. 275: 23319-25. Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W., and Vandenabeele, P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem. 278: 5622-9. Vasilevskaya, I.A., Rakitina, T.V., and O''Dwyer, P.J. (2003) Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of Cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. Cancer Res. 63: 3241-6. Vasilevskaya, I.A. and O''Dwyer, P.J. (2005) 17-Allylamino-17-demethoxygeldanamycin overcomes TRAIL resistance in colon cancer cell lines. Biochem. Pharmacol. 70: 580-9. Vaupel, P., Kelleher, D.K., and Thews, O. (1998) Modulation of tumor oxygenation. Int. J. Radiat. Oncol. Biol. Phys. 42: 843-8. Vilenchik, M., Solit, D., Basso, A., Huezo, H., Lucas, B., He, H., Rosen, N., Spampinato, C., Modrich, P., and Chiosis, G. (2004) Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol. 11: 787-97. Wang, X., Ju, W., Renouard, J., Aden, J., Belinsky, S.A., and Lin, Y. (2006) 17-Allylamino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-kappaB pathway. Cancer Res. 66: 1089-95. Wartenberg, M., Ling, F.C., Muschen, M., Klein, F., Acker, H., Gassmann, M., Petrat, K., Putz, V., Hescheler, J., and Sauer, H. (2003) Regulation of the multidrug resistance transporter P-glucoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 17: 503-5. Wen, J., Ramadevi, N., Nguyen, D., Perkins, C., Worthington, E., and Bhalla, K. (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 96:3 900–6. Wendt, J., von Haefen, C., Hemmati, P., Belka, C., Dorken, B., and Daniel, P.T. (2005) TRAIL sensitizes for ionizing irradiationinduced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 24: 4052–64. Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., and Goodwin, R.G. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673-82. Xu, W., Mimnaugh, E., Rosser, M.F., Nicchitta, C., Marcu, M., Yarden, Y., and Neckers, L. (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J. Biol. Chem. 276: 3702-8. Yoshida, T., Shiraishi, T., Nakata, S., Horinaka, M., Wakada, M., Mizutani, Y., Miki, T., and Sakai, T. (2005) Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer Res. 65: 5662-7. Young, J.C., Moarefi, I., and Hartl, F.U. (2001) Hsp90: a specialized but essential protein-folding tool. J. Cell. Biol. 154: 267–73. Zhong, H., De Marzo, A.M. Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., Buechler, P., Issacs, W.B., Semenza, G.L., and Simons, J.W. (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59: 5830-5.
|