跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:裴國廷
研究生(外文):Guo-Ting Pei
論文名稱:HSP90抑制劑以及低氧環境對TRAIL受體表現的調節機制
論文名稱(外文):Regulation of TRAIL Receptor Expression by HSP90 Inhibitors and Hypoxia
指導教授:林琬琬林琬琬引用關係
指導教授(外文):Wan-Wan Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:83
中文關鍵詞:低氧
外文關鍵詞:HSP90TRAILhypoxia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於Tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) 此蛋白對腫瘤細胞有高度的選擇性,因此被認為是個極有潛力的抗癌療法物質。TRAIL具有四個主要的接受器:DR4、DR5、DcR1、以及DcR2,前兩者的活化可以招集FADD以傳遞死亡訊息,然而後兩者則與TRAIL結合以中和TRAIL產生的毒性。熱休克蛋白HSP90對於許多真核生物蛋白質激脢及核內荷爾蒙接收器的活化是必須的,可幫助其目標蛋白的正確折疊,在細胞訊號傳遞及癌症發展過程扮演重要的角色。HSP90抑制劑對腫瘤細胞內的HSP90較正常細胞有100倍以上的親和力,可誘導腫瘤細胞生長停止進而引發細胞凋亡。在本篇研究中,我們發現在大腸腫瘤細胞中,HSP90抑制劑可以促進腫瘤細胞的DR5表現量上升(DR4, DcR1以及DcR2則不受影響)進而增強TRAIL對腫瘤細胞的毒殺性。一般常見調控DR5基因的分子機轉不外乎是經由p53、CHOP、或是NF-kB的調節,然而在我們的實驗中,我們發現HSP90抑制劑使DR5表現量上升是經由「後轉錄」的機制,且更發現了熱休克蛋白HSP70可以經由HSP90抑制劑的促進,進而接上DR5以增強其蛋白質結構穩定性。「低氧環境」被認為是固體腫瘤生長條件的重要特徵之一,其可促使腫瘤細胞對化學療法的耐受性。在本篇研究中,我們發現當腫瘤細胞處於低氧環境中,其細胞表面的DcR2誘餌受體的表現量會上升,但DR4, DR5及DcR1則不受影響。此外,我們發現HIF-1alpha對DcR2的基因調節扮演重要的角色。我們認為TRAIL是個相當有希望的抗癌療法,若能更深度了解TRAIL接受器的調控,將可以更有效的促進TRAIL對腫瘤細胞的毒殺性。在本篇研究中,我們發現DR5的表現量會受到HSP90抑制劑的促進,同時,其現象是經由HSP70增進DR5的穩定性所致。此外,固體腫瘤細胞於低氧環境,活化了HIF-1
Tumor-necrosis-factor related apoptosis inducing ligand (TRAIL) is a promising candidate in anti-tumor therapy because of its high selectivity towards cancer cells. TRAIL has four major distinct receptors: DR4 and DR5 can recruit FADD to induce extrinsic death signal; DcR1 and DcR2 are decoy receptors, which can neutralize TRAIL toxicity by binding to TRAIL. In this study we investigated the effects of HSP90 inhibitors and hypoxia on TRAIL receptors expression in five different human colon cancer cell lines (HCT-116, HT-29, SW-480, SW-620, and WiDr). We found that several HSP90 inhibitors can synergistically enhance TRAIL toxicity in colon cancer cells accompanying by the upregulation of DR5 protein expression. DR4, DcR1 and DcR2 expression were not changed by HSP90 inhibitors. The DR5 upregulation is associated with post-translational mechanism, but unrelated to the gene transcription resulting from the activity of p53, CHOP and NF-kB, which are three major transcription factors identified for DR5 gene expression. Our results revealed that HSP70 upregulation following HSP90 inhibition can associate with DR5 and contribute to DR5 protein stabilization. We also found that hypoxia, an important feature of solid tumors and rendering tumor cells resistant to some chemotherapeutic reagents, is able to upregulate DcR2 protein expression in colon cancer cells. However hypoxia does not affect DR4, DR5 and DcR1 protein levels. RT-PCR study suggests this protein increase is resulting from DcR2 gene transcription. Exploring transcription factor(s) by using p53-null cells, pharmacological inhibitors as well as siRNA approach, our results revealed that hypoxia-dependent HIF-1α activation plays a crucial role in the gene transcription of DcR2, while neither p53 nor NF-kB has contribution in this action.
In conclusion, given that TRAIL-mediated tumor cell apoptosis is a promising antitumor strategy, conditions or factors which modulate TRAIL receptors might affect tumor sensitivity to TRAIL. In this study, we found that DR5 protein is stabilized by HSP90 inhibitors-mediated HSP70, while DcR2 protein is upregulated at transcriptional level in hypoxia state through HIF-1α signaling pathway. In our future study we plan to address the roles of both receptor induction in anti-tumor efficiency in response to TRAIL under HSP90 inhibitor treatment and hypoxia condition.
Abbreviations...………………………………………………………………………..1
Abstract………………………………………………………………………………..3
Abstract in Chinese…………..………………………………………………………..5
Introduction……………………………………………………………………………7
Specific Aims ………………………………………………………………..…….17
Meterials and Methods……………………………………………………………….18

PART I. HSP90 inhibitors Enhance TRAIL-induced cell apoptosis through DR5 upregulation: involvement of HSP70 upregulation.
Results………………………………………………………………..26
Discussion……...…………………………………………………….34
Figures….…………………………………………………………….39

PART II. Hypoxia induces DcR2 gene transcription through the hypoxia-inducible factor-1α upregulation.
Results………………………………………………………………..52
Discussion……...…………………………………………………….55
Figures..………………………………………………………………57

Reference……………………………………………………………..………………65
Agatsuma, T., Ogawa, H., Akasaka, K., Asai, A., Yamashita, Y., Mizukami, T., Akinaga, S., and Saitoh, Y. (2002) Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorg. Med. Chem. 10: 3445-54.
Ashkenazi, A., Pai, R.C., Fong, S., Leung, S., Lawrnce, D.A., Marsters, S.A., Blackie, C., Chang, L., McMurtrey, A.E., Hebert, A., DeForge, L., Koumenis, I.L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z. and Schwall R.H. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104: 155-62.
Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nat. Rev. Cancer 2: 420-30.
Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., and Rosen, N. (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem. 277: 39858-66.
Banerji, U., O''Donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Maloney, A., Raynaud, F., Campbell, M., Walton, M., Lakhani, S., Kaye, S., Workman, P., and Judson, I. (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 23: 4152-61.
Batchelder, R.M., Wilson, W.R., Hay, M.P., and Denny, W.A. (1996) Oxygen dependence of the cytotoxicity of the enediyne anti-tumour anticiotic esperamicin A1. Br. J. Cancer Suppl. 27: S52-6.
Belka C, Schmid B, Marini P, et al. (2001) Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 20: 2190–6.
Blagosklonny, M.V., Toretsky, J., Bohen, S. and Neckers, L. (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Sci. USA 93: 8379-83.
Broemer, M., Krappmann, D., and Scheidereit, C. (2004) Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene. 23: 5378-86.
Brugge, J.S., Erikson, E. and Erikson, R.L. (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25: 363-72.
Buncher J. (1999) HSP90 & Co. - a holding for folding. Trends Biochem. Sci. 24: 136-41.
Chen, G., Cao, P. and Goeddel, D. V. (2002) TNF-induced recruitment and activation of the IκK complex require Cdc37 and Hsp90. Mol. Cell 9: 401-10.
Chuntharapai, A., Dodge, K., Grimmer, K., Schroeder, K., Marsters, S.A., Koeppen, H., Ashkenazi, A., and Kim, K.J. (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol. 166: 4891-8.
Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z., and Nardai, G. (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. Pharmacol. Ther. 79: 1129-68.
Comerford, K.M., Wallace, T.J., Karhausen, J., Louis, N.A., Montalto, M.C., and Colgan, S.P. (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62: 3387-94.
Cornford, P.A., Dodson, A.R., Parsons, K.F., Desmond, A.D., Woolfenden, A., Fordham, M., Neoptolemos, J.P., Ke, Y., and Foster, C.S. (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 60: 7099-105.
Daniel PT, Wieder T, Sturm I, and Schulze-Osthoff K. (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15: 1022–32.
de Candia, P., Solit, D.B., Giri, D., Brogi, E., Siegel, P.M., Olshen, A.B., Muller, W.J., Rosen, N., and Benezra, R. (2003) Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc. Natl. Acad. Sci. U S A. 100: 12337-42.
Degli-Esposti, M.A., Smolak, P.J., Walczak, H., Waugh, J., Huang, C.P., DuBose, R.F., Goodwin, R.G., and Smith, C.A. (1997a) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J. Exp. Med. 186: 1165-70.
Degli-Esposti, M.A., Dougall, W.C., Smolak, P.J., Waugh, J.Y., Smith, C.A., and Goodwin, R.G. (1997b) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity. 7: 813-20.
Demidenko, Z.N., Vivo, C., Halicka, H.D., Li, C.J., Bhalla, K., Broude, E.V., and Blagoklonny, M.V. (2005) Pharmacological induction of Hsp70 protects apoptosis-prone cells from doxorubicin: comparison with caspase-inhibitor- and cycle-arrest-mediated cytoprotection. Cell Death Differ. 25: 1-8.
Dempsey, P.W., Doyle, S.E., He J.Q., and Cheng, G. (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 14: 193- 209.
Dhein, J., Daniel, P.T., Trauth, B.C., Oehm, A., Moller, P., and Krammer, P.H. (1992) Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J. Immunol. 149:.3166–73.
Duncan. R.F. (2005) Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J. 272: 5244-56.
Emery, J.G., McDonnell, P., Burke, M.B., Deen, K.C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E.R., Eichman, C., DiPrinzio, R., Dodds, R.A., James, I.E., Rosenberg, M., Lee, J.C., and Young, P.R. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem. 273: 14363-7.
Garnier, C., Lafitte, D., Tsvetkov, P.O., Barbier, P., Leclerc-Delvin, J., Millot, J.M., Briand, C., Makarov, A.A., Catelli, M.G., and Peyrot, V. (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J. Biol. Chem. 277: 12208-14.
Guettouche, T., Boellmann, F., Lane, W.S., and Voellmy, R. (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6: 4.
Guo, F., Sigua, C., Bali, P., George, P., Fiskus, W., Scuto, A., Annavarapu, S., Mouttaki, A., Sondarva, G., Wei, S., Wu, J., Djeu, J., and Bhalla, K. (2005) Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood 103: 1246-55.
Guo, Y., Guettouche, T., Fenna, M., Boellmann, F., Pratt, W.B., Toft, D.O., Smith, D.F., and Voellmy, R. (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276: 45791-9.
Hansen, R.K., Oesterreich, S., Lemieux, P., Sarge, K.D., and Fuqua, S.A. (1997) Quercetin inhibits heat shock protein induction but no heat shock factor DNA-binding in human breast carcinoma cells. Biochem. Biophys. Res. Commun. 239: 851-6.
Harris, A.L. (2002) Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2: 38-47.
Hartl, F., (1996) Molecular chaperones in cellular protein folding. Nature 381: 571-80.
He, Q., Lee, D. I., Rong, R., Yu, M., Luo, X., Klein, M., El-Deiry, W. S., Huang, Y., Hussain, A., and Sheikh, M. S. (2002) Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21: 2623-33.
He, Q., Huang, Y., and Sheikh, M. S. (2004) Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and –deficient cells. Oncogene 23: 2554-8.
Held, J. and Schulze-Osthoff, K. (2001) Potential and caveats of TRAIL in cancer therapy. Drug Resist Update 4: 243–52.
Hockel, M. and Vaupel, P. (2001) Biological consequences of tumor hypoxia. Semin. Oncol. 28: 36-41.
Holen, I., Croucher, P. I., Hamdy, F. C., and Eaton, C. L. (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res. 62: 1619-23.
Hosokawa, N., Hirayoshi, K., Kudo, H., Takechi, H., Aoike, A., Kawai, K., and Nagata, K. (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol. Cell. Biol. 12: 3490-8.
Hougardy, B.M., Maduro, J.H., van der Zee, A.G., de Groot, D.J., van den Heuvel, F.A., de Vries, E.G., and de Jong, S. (2006) Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis. Int. J. Cancer. 115: 1892-900.
Hu, Y., and Mivechi, N.F. (2003) HSF-1 interacts with Ra1-binding protein 1 in a stress-responsive, multiprotein complex with HSP90 in vivo. J. Biol. Chem. 278: 17299-306.
Huang, L.E. and Bunn, H.F. (2003) Hypoxia-inducible factor and its biomedical relevance. J. Biol. Chem. 278: 19575-8.
Ikuina, Y., Amishiro, N., miyata, M., Narumi, H., Ogawa, H., Akiyama, T., Shiotsu, Y., Akinaga, S., and Murakata, C. (2003) Synthesis and antitumor activity of novel O-carbamoylmethyloxime derivatives of radicicol. J. Med. Chem. 46: 2534-41.
Ichikawa, K., Liu, W., Zhao, L.,Wang, Z., Liu,, D.,Ohtsuka, T., Zhang, H., Mountz, J.D., Koopman, W.J., Kimberly, R.P., and Zhou, T. (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytoxicity. Nat. Med. 7: 954-60.
Jia, W., Yu, C., Rahmani, M., Krystal, G., Sausville EA, Dent P et al. (2003) Synergistic antileukemic interactions between 17-AAG and UCN-01 involve interruption of RAF/MEK- and AKT-related pathways. Blood 102: 1824-32.
Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M.F., Fritz, L.C., and Burrows, F.J. (1997) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 357-9.
Kim, M., Park, S.Y., Pai, H.S., Kim, T.H., Billiar, T.R., and Seol, D.W. (2004) Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res. 64: 4078-81.
Kim, J., Nueda, A., Meng, Y.H., Dynan, W.S., and Mivechi, N.F. (2005) Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J. Cell. Biochem. 67: 43-54.
Klettner A. (2004) The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drugs News Perspect. 17: 299-306.
Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D., Mounho, B., Hillan, K., Totpal, K., DeForge, L., Schow, P., Hooley, J., Sherwood, S., Pai, R., Leung, S., Khan, L., Gliniak, B., Bussiere, J., Smith, C.A., Strom, S.S., Kelley, S., Fox, J.A., Thomas, D., and Ashkenazi, A. (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 7: 383-5.
Lee, Y.S., Marcu, M.G., and Neckers, L. (2004) Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem. Biol. 11: 991-8.
Lewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., and Liu, Z.G. (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J. Biol. Chem. 275: 10519-26.
Ma, Y., Lakshmikanthan, V., Lewis, R.W., andKumar, M.V. (2006) Sensitization of TRAIL-resistant cells by inhibition of heat shock protein 90 with low-dose geldanamycin. Mol. Cancer Ther. 5: 170-8.
MacFarlane, M., Ahmad, M., Srinivasula, S.M., Fernandes-Alnemri, T., Cohen, G.M., and Alnemri, E.S. (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J. Biol. Chem. 272: 25417-20.
Marcu, M.G., Chardli, A., Bouhouche, I., Catelli, M., and Neckers, L.M. (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem. 275: 37181-6.
Marsters, S.A., Sheridan, J.P., Pitti, R.M., Huang, A., Skubatch, M., Baldwin, D., Yuan, J., Gurney, A., Goddard, A.D., Godowski, P., and Ashkenazi, A. (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr. Biol. 7: 1003-6.
Morimoto, R.I. (2002) Dynamic remodeling of transcription complexes by molecular chaperones. Cell 110: 281-4.
Munster, P.N., Srethapakdi, M., Moasser, M.M., and Rosen, N. (2001) Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res. 61: 2945-52.
Munster, P.N., Basso, A., Solit, D., Norton, L., and Rosen N. (2001) Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. Clin. Cancer Res. 7: 2228-36.
Musio M. (1998) Signalling by proteolysis: death receptors induce apoptosis. Int. J. Clin. Lab. Res. 28:141-7.
Nagane, M., Pan, G., Weddle, J.J., Dixit, V.M., Cavenee, W.K., and Huang, H.-J. S. (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res. 60: 84753.
Naka, T., Sugamura, K., Hylander, B., Widmer, M.B., Rustum, Y.M., and Repasky, E.A. (2002) Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors growth in SCID mice. Cancer Res. 62: 5800-6.
Neckers, L. and Neckers, K. (2005) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics - an update. Expert Opin. Emerg. Drugs. 10: 137-49.
Numahata, K., Komagata, T., Hirasawa, N., Someya, K., Xiao, Y.Q., and Ohuchi, K. (2003) Analysis of the mechanism regulating the stability of rat macrophage inflammatory protein-2 mRNA in RBL-2H3 cells. J Cell Biochem. 90: 976-86.
Olsson, A., Diaz, T., Aguilar-Santelises, M., Osterborg, A., Celsing, F., Jondal, M., and Osorio, L.M. (2001) Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D. Leukemia. 15: 1868-77.
Pan, G., O''Rourke, K., Chinnaiyan, A.M., Gentz, R., Ebner, R., Ni, J., and Dixit, V.M. (1997a) The receptor for the cytotoxic ligand TRAIL. Science 276: 111-3.
Pan, G., Ni, J., Wei, Y.F., Yu, G., Gentz, R., and Dixit, V.M. (1997b) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277: 815-8.
Pan, G., Ni, J., Wei, Y. F., and Dixit, V. M.(1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signaling. FEBS Lett. 424: 41-5.
Pitti, R.M., Marsters, S.A., Ruppert, S., Donahue, C.J., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271: 12687-90.
Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228: 111-33.
Prodromou, C., Roe, S.M., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pear, L.H. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65-75.
Pugh, C.W. and Ratcliffe, P.J. (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9: 677-84.
Rahmani, M., Yu, C., Dai, Y., Reese, E., Ahmed, W., Dent, P. et al. (2003) Coadministration of the heat shock protein 90 antagonist 17-allylamino-17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res. 63: 8420-7.
Roe, S.M., Prodromou, C., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42: 260-6.
Sanchez, E.R., Toft, D.O., Schlesinger, M.J., and Pratt, W.B. (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J. Biol. Chem. 260: 12398-12401.
Sato, S., Fujita, N., and Tsuruo, T. (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97: 10832-7.
Sausville, E.A. (2001) Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Commentary re: P. Munster et al., Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner.Clin. Cancer Res. 7: 2228-36.
Schulte, T.W. and Neckers, L.M. (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42: 273-9
Semenza, G.L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8: S62-7.
Shaknovich, R., Shue, G., and Kohtz, D.S. (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol. Cell. Biol. 12: 5059-68.
Sheikh, M.S., Huang, Y., Fernandez-Salas, E.A., El-Deiry, W.S., Friess, H., Amundson, S., Yin, J., Meltzer, S.J., Holbrook, N.J., and Fornacem, A.J. Jr. (1999) The antiapoptotic decoy receptor TRID and TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18: 4153-9.
Sheridan, J.P., Marsters, S.A., Pitti, R.M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C.L., Baker, K., Wood, W.I., Goddard, A.D., Godowski, P., and Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277: 818-21.
Shi, R.X., Ong, C.N., and Shen, H.M. (2004) Luteolin sensitizes tumor necrosis factor-a-induced apoptosis in human tumor cells. Oncogene 23: 7712–21.
Shu, C.W., Cheng, N.L., Chang, W.M., Tseng, T.L., and Lai, Y.K. (2005) Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J. Cell. Biochem. 94: 1199-209.
Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., Nguyen, H. Q., Wooden, S., Bennett, L., Boone, T. et al. (1997) Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89: 309-19.
Sittler, A., Lurz, R., Lueder, G., Priller, J., Lehrach, H., Hayer-Hartl, M.K., Hartl, F.U., and Wanker, E.E. (2001) Geldanamycin activates a heat shock response and inhibits hungtin aggregation in a cell culture model of Huntington’s disease. Hum. Mol. Genet. 10: 1307-15.
Smith, D. F., Whitesell, L., Nair, S.C., Chen, S., Prapapanich, V., and Rimerman, R.A. (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol.Cell. Biol. 15: 6804-12.
Soga, S., Kozawa, T., Narumi, H., Akinaga, S., Irie, K., Matsumoto, K., Sharma, S.V., Nakano, H., Mizukami, T., and Hara, M. (1998) Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway. J. Biol. Chem. 273: 822-8.
Solit, D.B., Basso, A.D., Olshen, A.B., Scher, H.I., and Rosen N. (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res. 63: 2139-44.
Soti, C., Racz, A., and Csermely, P. (2002) A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J. Biol. Chem. 277: 7066-75
Sreedhar, A.S. and Csermely, P. (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol. Ther. 101: 227-57.
Stancato, L.F., Chow, Y.H., Owens-Grillo, J.K., Yem, A.W., Deibel, M.R.Jr, Jove, R., and Pratt, W.B. (1994) The native v-Raf.hsp90.p50 heterocomplex contains a novel immunophilin of the FK506 binding class. J. Biol. Chem. 269: 22157-61.
Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., and Pavletich, N.P. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89: 239-50.
Teicher, B.A., Kowal, C.D., Kennedy, K.A., and Sartorelli, A.C. (1981) Enhancement by hyperthermia of the in vitro cytotoxicity of mitomycin C toward hypoxic tumor cells. Cancer Res. 41: 1096-9.
Truneh, A., Sharma, S., Silverman, C., Khandekar, S., Reddy, M. P., Deen, K. C., McLaughlin, M. M., Srinivasula, S. M., Livi, G. P., Marshall, L. A. et al. (2000) Temperature-sensitive differential affinity of TRAIL for its receptors. DR5 is the highest affinity receptor. J. Biol. Chem. 275: 23319-25.
Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W., and Vandenabeele, P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem. 278: 5622-9.
Vasilevskaya, I.A., Rakitina, T.V., and O''Dwyer, P.J. (2003) Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of Cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. Cancer Res. 63: 3241-6.
Vasilevskaya, I.A. and O''Dwyer, P.J. (2005) 17-Allylamino-17-demethoxygeldanamycin overcomes TRAIL resistance in colon cancer cell lines. Biochem. Pharmacol. 70: 580-9.
Vaupel, P., Kelleher, D.K., and Thews, O. (1998) Modulation of tumor oxygenation. Int. J. Radiat. Oncol. Biol. Phys. 42: 843-8.
Vilenchik, M., Solit, D., Basso, A., Huezo, H., Lucas, B., He, H., Rosen, N., Spampinato, C., Modrich, P., and Chiosis, G. (2004) Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol. 11: 787-97.
Wang, X., Ju, W., Renouard, J., Aden, J., Belinsky, S.A., and Lin, Y. (2006) 17-Allylamino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-kappaB pathway.
Cancer Res. 66: 1089-95.
Wartenberg, M., Ling, F.C., Muschen, M., Klein, F., Acker, H., Gassmann, M., Petrat, K., Putz, V., Hescheler, J., and Sauer, H. (2003) Regulation of the multidrug resistance transporter P-glucoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 17: 503-5.
Wen, J., Ramadevi, N., Nguyen, D., Perkins, C., Worthington, E., and Bhalla, K. (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 96:3 900–6.
Wendt, J., von Haefen, C., Hemmati, P., Belka, C., Dorken, B., and Daniel, P.T. (2005) TRAIL sensitizes for ionizing irradiationinduced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 24: 4052–64.
Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., and Goodwin, R.G. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673-82.
Xu, W., Mimnaugh, E., Rosser, M.F., Nicchitta, C., Marcu, M., Yarden, Y., and Neckers, L. (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J. Biol. Chem. 276: 3702-8.
Yoshida, T., Shiraishi, T., Nakata, S., Horinaka, M., Wakada, M., Mizutani, Y., Miki, T., and Sakai, T. (2005) Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer Res. 65: 5662-7.
Young, J.C., Moarefi, I., and Hartl, F.U. (2001) Hsp90: a specialized but essential protein-folding tool. J. Cell. Biol. 154: 267–73.
Zhong, H., De Marzo, A.M. Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., Buechler, P., Issacs, W.B., Semenza, G.L., and Simons, J.W. (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59: 5830-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top