跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉綺
研究生(外文):Chia-Chi Lin
論文名稱:氯化鋁排齦液對人類牙齦血管內皮細胞生物效應之探討
論文名稱(外文):The biologic effects of aluminum chloride on human gingival vascular endothelial cells
指導教授:王若松王若松引用關係
指導教授(外文):Juo-Song Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:73
中文關鍵詞:牙齦組織的血管內皮細胞收斂劑
外文關鍵詞:GINGIVAL ENDOTHELIAL CELLSASTRINGENT AGENTS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氯化鋁是牙科治療過程中常用來控制牙齦出血的收斂劑。但是這類藥品接觸牙齦的時間越久,對口腔角化上皮以及纖維母細胞的毒性就越強,結果可能導致牙齦萎縮、牙根敏感、甚至影響美觀。牙齦組織的血管豐富,治療過程中如果造成牙齦損傷出血,收斂劑可能經由傷口吸收而影響血管內皮細胞的生理特性,連帶影響牙齦組織傷口癒合之血管新生作用。因此,本篇研究論文主要在探討氯化鋁對牙齦血管內皮細胞生物特性的影響,以分離自人類牙齦組織的血管內皮細胞與人類臍靜脈內皮細胞為模式細胞,探討臨床使用之氯化鋁依照不同的處理時間,對兩種血管內皮細胞的毒性作用,及其對人類血管內皮細胞生長因子(VEGF)所誘發兩種血管內皮細胞血管新生作用的生物效應。實驗結果顯示,臍靜脈血管內皮細胞和牙齦血管內皮細胞在25%氯化鋁處理5分鐘的情況下,48小時的細胞存活率僅剩30%及27% 。利用Hoechst 33258的細胞核染色觀察到25%氯化鋁會誘發凋亡小體的形成並伴隨著細胞質內與細胞凋亡機制相關酵素caspase 3的活性提高。細胞內p53蛋白質會隨著細胞接觸25%氯化鋁的時間增加而增加,然而預先處理antisense p53 oligonucleotides以抑制由25%氯化鋁所誘發p53蛋白質的表現,可以降低其誘發血管內皮細胞凋亡的情況。由以上結果顯示25%氯化鋁在處理5分鐘的情況下即能對血管內皮細胞產生毒性作用,主要是引發p53/ caspase 3相關途徑之細胞凋亡。在探討短時間的暴露是否會影響VEGF誘發內皮細胞血管新生作用的實驗結果顯示,臍靜脈血管內皮細胞和牙齦血管內皮細胞經過25%氯化鋁3分鐘的處理之後,對24小時的細胞存活率沒有明顯的毒性影響,然而25%氯化鋁會抑制VEGF調控血管內皮細胞通透性的能力、抑制VEGF誘發細胞移動/侵襲的作用、以及抑制VEGF誘發血管內皮細胞在Matrigel上形成管狀結構的功能。在鷄胚尿囊膜活體試驗的結果顯示,經過25%氯化鋁溶液2分鐘的處理會明顯抑制VEGF所誘發的微小血管新生。機轉研究上,我們發現25%氯化鋁會抑制VEGF誘發血管內皮細胞VEGF receptor 2的磷酸化。由以上的實驗結果顯示,氯化鋁作用時間對血管內皮細胞的耐受度有很大的關係,可能引發細胞凋亡或抑制血管新生作用。
Aluminum chloride acts as an astringent agent with excellent haemostatic properties during gingival retraction. However, the chemical may result in the recession of gingival tissue in prolonged exposure time. The gingiva possesses rich terminal blood supplies, which are mainly composed of vascular endothelial cells. When gingival tissue undergoes trauma or iatrogenic laceration, capillaries rupture facilitates more absorption of retraction solution in gingival tissue. In this study, we investigated the cytotoxic effects of aluminum chloride on human gingival vascular endothelial cells (HGECs) and human umbilical vascular endothelial cells (HUVECs). The results of MTT assay revealed 20% and 25% aluminum chloride significantly lessened survival rate of both HUVECs and HGECs. The 25% aluminum chloride could induce HUVECs and HGECs apoptotic body formation and high caspase 3 activity significantly in 5-minute treatment. However, the p53-dependent apoptosis induced by 25% aluminum chloride could be rescued by antisense p53 oligonucleotides. 25% aluminum chloride showed the anti-angiogenic effects in the shorter exposure time, including the inhibition of endothelial cells tube formation on Matrigel and the inhibition of endothelial cells migration/ invasion in 3-minute treatment, the inhibition of VEGF-induced monolayer cell permeability, and the inhibition of VEGF-induced angiogenesis on chicken chorioallantoic membrane in 2-minute treatment. 25% aluminum chloride also inhibited VEGF-induced VEGF receptor 2 tyrosine phosphorylation. Therefore, we concluded that 25% aluminum chloride could induce human gingival vascular endothelial cells p53-dependent apoptosis or inhibit VEGF modulated angiogenesis, depending on the length of exposure time.
中文摘要.....................................01
Abstract.....................................02
Introduction.................................03
Specific Aims................................20
Materials and Methods........................21
Result.......................................31
Discussion...................................38
Conclusion...................................44
Future Perspective ...........................45
Figures......................................47
Reference ....................................63
Appendix.....................................70

List of Figures and Tables:
Figure 1. The histological photograph of human gingival tissue.......................................47
Figure 2. Characterization of isolated HGECs and HUVECs.......................................48
Figure 3. Identification of HUVECs and HGECs with immunohistochemical staining.................49
Figure 4. Cytotoxic effects of AlCl3 on HUVECs and HGECs........................................50
Figure 5. 25% AlCl3 induced HUVECs and HGECs apoptosis....................................51
Figure 6. 25% AlCl3 induced HGECs p53 expression...................................53
Figure 7. 25% AlCl3 induced caspase 3 activation in HUVECs.......................................54
Figure 8. 25% AlCl3 induced HGECs p53-dependent apoptosis....................................55
Figure 9. Effects of 25% AlCl3 on VEGF-induced HUVECs and HGECs monolayer permeability.................56
Figure 10. Effects of 25% AlCl3 on VEGF-induced HUVECs and HGECs tube formation on Matrigel..57
Figure 11. Effects of 25% AlCl3 on VEGF-induced HUVECs and HGECs migration..................58
Figure 12. Effects of 25% AlCl3 on VEGF-induced HUVECs and HGECs invasion capability.........59
Figure 13. Effects of 25% AlCl3 on VEGF-induced angiogenesis on CAM..........................60
Figure 14. Effects of 25% AlCl3 on VEGF-induced VEGF receptor 2 tyrosine phosphorylation.....61
Figure 15. Schematic mechanism of AlCl3 inhibits VEGF-modulated HGECs angiogenesis............62
Anderson,N.D., Anderson,A.O., and Wyllie,R.G. (1976). Specialized structure and metabolic activities of high endothelial venules in rat lymphatic tissues. Immunology 31, 455-473.
Arora,N., Masood,R., Zheng,T., Cai,J., Smith,D.L., and Gill,P.S. (1999). Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res. 59, 183-188.
Azzi,R., Tsao,T.F., Carranza,F.A., Jr., and Kenney,E.B. (1983). Comparative study of gingival retraction methods. J. Prosthet. Dent. 50, 561-565.
Bader,J.D., Bonito,A.J., and Shugars,D.A. (2002). A systematic review of cardiovascular effects of epinephrine on hypertensive dental patients. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 93, 647-653.
Baharav,H., Laufer,B.Z., Langer,Y., and Cardash,H.S. (1997). The effect of displacement time on gingival crevice width. Int. J. Prosthodont. 10, 248-253.
Bartold,P.M., Walsh,L.J., and Narayanan,A.S. (2000). Molecular and cell biology of the gingiva. Periodontol. 2000. 24, 28-55.
Benson,B.W., Bomberg,T.J., Hatch,R.A., and Hoffman,W., Jr. (1986). Tissue displacement methods in fixed prosthodontics. J. Prosthet. Dent. 55, 175-181.
Bergstrom,J. (1992). Vascular reaction in plaque-induced gingivitis: a quantitative approach. J. Periodontal Res. 27, 604-608.
Bowles,W.H., Tardy,S.J., and Vahadi,A. (1991). Evaluation of new gingival retraction agents. J. Dent. Res. 70, 1447-1449.
Buchanan,W.T. and Thayer,K.E. (1982). Systemic effects of epinephrine-impregnated retraction cord in fixed partial denture prosthodontics. J. Am. Dent. Assoc. 104, 482-484.
Carmeliet,P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389-395.
Carranza,F.A., Jr., Itoiz,M.E., Cabrini,R.L., and Dotto,C.A. (1966). A study of periodontal vascularization in different laboratory animals. J. Periodontal Res. 1, 120-128.
Chapple,C.C., Kumar,R.K., and Hunter,N. (2000). Vascular remodelling in chronic inflammatory periodontal disease. J. Oral Pathol. Med. 29, 500-506.
Chiarugi,V., Magnelli,L., Cinelli,M., and Basi,G. (1994). Apoptosis and the cell cycle. Cell Mol. Biol. Res. 40, 603-612.
Ciarlone,A.E. and Pashley,D.H. (1992). Permeability of root dentin to epinephrine released from gingival retraction cord. Oper. Dent. 17, 106-111.
de Gennaro,G.G., Landesman,H.M., Calhoun,J.E., and Martinoff,J.T. (1982). A comparison of gingival inflammation related to retraction cords. J. Prosthet. Dent. 47, 384-386.
Distler,J.H., Hirth,A., Kurowska-Stolarska,M., Gay,R.E., Gay,S., and Distler,O. (2003). Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q. J. Nucl. Med. 47, 149-161.
Donovan,T.E., Gandara,B.K., and Nemetz,H. (1985). Review and survey of medicaments used with gingival retraction cords. J. Prosthet. Dent. 53, 525-531.
Dumont,D.J., Jussila,L., Taipale,J., Lymboussaki,A., Mustonen,T., Pajusola,K., Breitman,M., and Alitalo,K. (1998). Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946-949.
Egelberg,J. (1966). The blood vessels of the dento-gingival junction. J. Periodontal Res. 1, 163-179.
Fazekas,A., Csempesz,F., Csabai,Z., and Vag,J. (2002). Effects of pre-soaked retraction cords on the microcirculation of the human gingival margin. Oper. Dent. 27, 343-348.
Ferrara,N. (1995). The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res. Treat. 36, 127-137.
Ferrara,N., Houck,K., Jakeman,L., and Leung,D.W. (1992). Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev. 13, 18-32.
Fischer,D.E. (1987). Tissue management: a new solution to an old problem. Gen. Dent. 35, 178-182.
Fong,G.H., Rossant,J., Gertsenstein,M., and Breitman,M.L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66-70.
Gartel,A.L. and Tyner,A.L. (2002). The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther. 1, 639-649.
Gerber,H.P., Vu,T.H., Ryan,A.M., Kowalski,J., Werb,Z., and Ferrara,N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623-628.
Gowans,J.L. and Knight,E.J. (1964). THE route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond B Biol. Sci. 159, 257-282.
Hakkinen,L., Uitto,V.J., and Larjava,H. (2000). Cell biology of gingival wound healing. Periodontol. 2000. 24, 127-152.
Harris,S.L. and Levine,A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908.
Hatch,C.L., Chernow,B., Terezhalmy,G.T., Van,N.M., Hall-Boyer,K., and Lake,C.R. (1984). Plasma catecholamine and hemodynamic responses to the placement of epinephrine-impregnated gingival retraction cord. Oral Surg. Oral Med. Oral Pathol. 58, 540-544.
Hoshi,T., Sasano,H., Kato,K., Yabuki,N., Ohara,S., Konno,R., Asaki,S., Toyota,T., Tateno,H., and Nagura,H. (1998). Immunohistochemistry of Caspase3/CPP32 in human stomach and its correlation with cell proliferation and apoptosis. Anticancer Res. 18, 4347-4353.
Jackson,C.J., Garbett,P.K., Nissen,B., and Schrieber,L. (1990). Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. J. Cell Sci. 96 ( Pt 2), 257-262.
Jaffe,E.A., Nachman,R.L., Becker,C.G., and Minick,C.R. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest 52, 2745-2756.
Kamansky,F.W., Tempel,T.R., and Post,A.C. (1984). Gingival tissue response to rotary curettage. J. Prosthet. Dent. 52, 380-383.
Kindlova,M. (1965). The blood supply of the marginal periodontium in Macacus rhesus. Arch. Oral Biol. 10, 869-874.
Kindlova,M. and Trnkova,H. (1972). The vascular arrangement beneath the sulcular and junctional epithelium in different degrees of cellular infiltration of dog gingiva. J. Periodontal Res. 7, 323-327.
Kishi,Y., Takahashi,K., and Trowbridge,H. (1990). Vascular network in papillae of dog oral mucosa using corrosive resin casts with scanning electron microscopy. Anat. Rec. 226, 447-459.
Kopac,I., Batista,U., Cvetko,E., and Marion,L. (2002a). Viability of fibroblasts in cell culture after treatment with different chemical retraction agents. J. Oral Rehabil. 29, 98-104.
Kopac,I., Cvetko,E., and Marion,L. (2002b). Gingival inflammatory response induced by chemical retraction agents in beagle dogs. Int. J. Prosthodont. 15, 14-19.
Kopac,I., Sterle,M., and Marion,L. (2002c). Electron microscopic analysis of the effects of chemical retraction agents on cultured rat keratinocytes. J. Prosthet. Dent. 87, 51-56.
Land,M.F., Couri,C.C., and Johnston,W.M. (1996). Smear layer instability caused by hemostatic agents. J. Prosthet. Dent. 76, 477-482.
Larjava,H., Salo,T., Haapasalmi,K., Kramer,R.H., and Heino,J. (1993). Expression of integrins and basement membrane components by wound keratinocytes. J. Clin. Invest 92, 1425-1435.
Lee,P.C., Salyapongse,A.N., Bragdon,G.A., Shears,L.L., Watkins,S.C., Edington,H.D., and Billiar,T.R. (1999). Impaired wound healing and angiogenesis in eNOS-deficient mice. Am. J. Physiol 277, H1600-H1608.
Liu,C.M., Huang,F.M., Yang,L.C., Chou,L.S., Chou,M.Y., and Chang,Y.C. (2004). Cytotoxic effects of gingival retraction cords on human gingival fibroblasts in vitro. J. Oral Rehabil. 31, 368-372.
Lodetti,G., D''Abrosca,F., Fontana,P., Pavoni,E., and Gigola,P. (2004). [Set up of in vitro methods able to detect the safety of astringent liquids]. Minerva Stomatol. 53, 361-367.
Matsui,Y., Matsushita,T., Sakuma,S., Gojo,T., Mamiya,T., Suzuoki,H., and Inoue,T. (2003). Virus inactivation in aluminum and polyaluminum coagulation. Environ. Sci. Technol. 37, 5175-5180.
Miquerol,L., Langille,B.L., and Nagy,A. (2000). Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127, 3941-3946.
Mokbel,A.M. and Mohammed,Y.R. (1973). Local effect of applying aluminum chloride on the dento-gingival unit as a tissue displacement material. Egypt. Dent. J. 19, 35-48.
Muller,A.M., Cronen,C., Muller,K.M., and Kirkpatrick,C.J. (1999). Comparative analysis of the reactivity of human umbilical vein endothelial cells in organ and monolayer culture. Pathobiology 67, 99-107.
Muller,A.M., Hermanns,M.I., Skrzynski,C., Nesslinger,M., Muller,K.M., and Kirkpatrick,C.J. (2002). Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp. Mol. Pathol. 72, 221-229.
Muller,E. and Stempfel,S. (1985). A three-dimensional reconstruction of high endothelial venules in the mouse lymph node: an enzyme-histochemical study. Anat. Rec. 212, 394-399.
Mutin,M., gnat-George,F., and Sampol,J. (1997). Immunologic phenotype of cultured endothelial cells: quantitative analysis of cell surface molecules. Tissue Antigens 50, 449-458.
Nachman,R.L. and Jaffe,E.A. (2004). Endothelial cell culture: beginnings of modern vascular biology. J. Clin. Invest 114, 1037-1040.
Nemeth,E., Kulkarni,G.V., and McCulloch,C.A. (1994). Proliferative responses of endothelial cell populations to experimentally induced inflammatory lesions of gingival connective tissues in the cynomolgus monkey (Macaca fascicularis). Anat. Rec. 239, 9-17.
Odland,G. and Ross,R. (1968). Human wound repair. I. Epidermal regeneration. J. Cell Biol. 39, 135-151.
Plouet,J., Schilling,J., and Gospodarowicz,D. (1989). Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J. 8, 3801-3806.
Ramadan,F.A., el-Sadeek,M., and Hassanein,e. (1972). Histopathologic response of gingival tissues to hemodent and aluminum chloride solutions as tissue displacement materials. Egypt. Dent. J. 18, 337-352.
Sawchuk,W.S., Friedman,K.J., Manning,T., and Pinnell,S.R. (1986). Delayed healing in full-thickness wounds treated with aluminum chloride solution. A histologic study with evaporimetry correlation. J. Am. Acad. Dermatol. 15, 982-989.
Schafer,K.A. (1998). The cell cycle: a review. Vet. Pathol. 35, 461-478.
Schuler,M. and Green,D.R. (2005). Transcription, apoptosis and p53: catch-22. Trends Genet. 21, 182-187.
Shalaby,F., Rossant,J., Yamaguchi,T.P., Gertsenstein,M., Wu,X.F., Breitman,M.L., and Schuh,A.C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62-66.
Shaw,D.H., Krejci,R.F., Todd,G.L., III, and Reinhardt,R.A. (1987). Determination of plasma catecholamines in dogs after experimental gingival retraction with epinephrine-impregnated cord. Arch. Oral Biol. 32, 217-219.
Sims,M.R., Sampson,W.J., and Fuss,J.M. (1988). Glomeruli in the molar gingival microvascular bed of germ-free rats. J. Periodontal Res. 23, 248-251.
Takahashi,A., Kono,K., Amemiya,H., Iizuka,H., Fujii,H., and Matsumoto,Y. (2001). Elevated caspase-3 activity in peripheral blood T cells coexists with increased degree of T-cell apoptosis and down-regulation of TCR zeta molecules in patients with gastric cancer. Clin. Cancer Res. 7, 74-80.
Weekes,W.T. and Sims,M.R. (1986). The vasculature of the rat molar gingival crevice. J. Periodontal Res. 21, 177-185.
Woody,R.D., Miller,A., and Staffanou,R.S. (1993). Review of the pH of hemostatic agents used in tissue displacement. J. Prosthet. Dent. 70, 191-192.
Zoellner,H., Chapple,C.C., and Hunter,N. (2002). Microvasculature in gingivitis and chronic periodontitis: disruption of vascular networks with protracted inflammation. Microsc. Res. Tech. 56, 15-31.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top