跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱家頤
研究生(外文):Chia-Yi Chu
論文名稱:複合樹脂直接填補應用於根管治療後之牙齒:鍵結強度與聚合收縮性質之分析
論文名稱(外文):Application of direct composite resin restoration in endodontically treated teeth: Bonding strength and polymerization shrinkage analysis
指導教授:林俊彬林俊彬引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:牙本質顯微結構推離鍵結測試樹脂聚合收縮
外文關鍵詞:dentin microstructurepush-out bonding testresin polymerization shrinkage
相關次數:
  • 被引用被引用:1
  • 點閱點閱:475
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
複合樹脂在牙科的應用已行之有年亦獲致不錯的成效,然而對於複合樹脂在根管治療後牙齒根管內部填補之應用,則缺乏較深入的研究。因此本實驗的目的如下: (1) 以電子顯微鏡進行牙本質結構之觀察並比較不同部位間的差異,(2) 以推離鍵結測試 (push-out bonding test) 的方法,比較不同牙本質黏著劑應用在根管窩洞填補時,複合樹脂與根管部牙本質之間的鍵結效果。(3) 由於複合樹脂之後膠聚合收縮對於根管內填補時的牙本質鍵結有極大的影響,因此實驗的最後亦針對本研究團隊新研發的樹脂基質系統,以應變計測量法 (strain gauge method) 分析其後膠聚合時期所產生之收縮應力。
在牙本質的電子顯微鏡觀察中發現,各部位牙本質小管管徑與密度皆由內部牙本質往外部牙本質遞減,牙本質小管密度由牙冠牙本質往牙根牙本質遞減,而管周牙本質的厚度則由內部牙本質往外部牙本質遞增,由牙冠牙本質往牙根牙本質遞減。在鍵結強度的測試方面,使用total-etch technique所得到的平均鍵結強度為37 ± 12.4 MPa,較 self etch technique 的21 ± 6.8 MPa高 (p < 0.001)。而使用相同的牙本質黏著技術,在牙根冠部與牙根中段之鍵結強度則沒有統計學上的差異。在新研發樹脂基質的聚合收縮測量方面,在相同重量百分比下,實驗組之最終收縮量均較對照組 (BisGMA) 低,顯示新研發的樹脂基質確實可改善聚合收縮的現象,然而加入填料後的其他各種性質仍需進一步的實驗測試研究。
Composite resin has been used in dentistry for several decades and has achieved good results in clinical, in vivo, and in vitro studies. However, there are few thorough studies about the application of composite resin in intra-canal restoration of post-endodontically treated teeth. The purposes of our study were as follows: (1) Observing dentin microstructure using scanning electron microscope. (2) Determining the bond strength of composite resin to root canal dentin using different dentin bonding agents by means of push-out bonding test. (3) Because of the great influence of composite resin polymerization shrinkage on intra-canal dentin bonding, we also measured the post-gel polymerization shrinkage of a new developed low-shrinkage resin matrix system using strain gauge method.
From the results of dentin microstructural study, we found that the diameter and density of dentinal tubules decreased from inner dentin to outer dentin, tubular density decreased from crown dentin to root dentin. Peritubular dentin thickness increased from inner dentin to outer dentin and decreased from crown dentin to root dentin. In the push-out bonding test, the average bond strength using total etch technique was 37 ± 12.7 MPa, higher than that of self etch technique (21 ± 6.8 MPa). Within each bonding agent, however, bond strength of composite resin to coronal or mid root dentin showed no significant differences. The results of polymerization shrinkage for the new developed resin matrix system showed that the new resin matrix system could improve resin polymerization shrinkage. However, other properties of the new resin system after adding fillers need further investigation.
謝誌 ii
中文摘要 iv
英文摘要 v
目錄 vi
第一章 前言 1
第二章 文獻回顧 3
2.1 牙冠牙本質與牙根牙本質結構之觀察 3
2.1.1 牙本質之胚胎發育及主要組成 3
2.1.2 各部位牙本質之結構、組成分佈與變化 4
2.2 複合樹脂與根管內牙本質鍵結強度之測試 5
2.2.1 牙本質黏著劑的發展 5
2.2.2 複合樹脂與不同部位牙本質的黏著 6
2.2.3 穿透撕裂測試 (Punch-shear test) 7
2.3 新研發低聚合收縮樹脂基質之後膠聚合收縮力測量8
2.3.1 光聚合複合樹脂之聚合收縮 8
2.3.2 以應變計法測量複合樹脂之後膠聚合收縮 9
2.3.3 新研發低聚合收縮樹脂基質簡介 10
第三章 動機與目的 12
第四章 材料與方法 13
4.1 牙冠牙本質與牙根牙本質結構之觀察 13
4.1.1 標本之製備 13
4.1.2 牙本質小管分布密度以及各組成比例之計算 13
4.2 複合樹脂與根管內牙本質鍵結強度之測試 14
4.2.1 材料 14
4.2.2 試片之製備 14
4.2.3 推離鍵結強度測試 15
4.2.4 鍵結破壞模式之觀察 15
4.3 新研發低聚合收縮樹脂基質之後膠聚合收縮力測量16
4.3.1 實驗組之化學成分 16
4.3.2 實驗組分組 17
4.3.3 對照組化學成分與分組 18
4.3.4 以應變計法量測樹脂之後膠聚合收縮 18
第五章 結果 20
5.1 牙冠牙本質與牙根牙本質結構之觀察 20
5.1.1 牙本質小管密度 20
5.1.2 牙本質小管管徑 20
5.1.3 管周牙本質厚度 20
5.2 複合樹脂與根管內牙本質鍵結強度之測試 21
5.2.1 推離鍵結強度 21
5.2.2 推離鍵結測試之施力-變形量圖中斜率 21
5.2.3 試片斷面之電子顯微鏡觀察 21
5.3 新研發低聚合收縮樹脂基質之後膠聚合收縮力測量21
5.3.1 最終收縮量 21
5.3.2 第一次與第二次收縮量百分比 22
第六章 討論 23
6.1 牙冠牙本質與牙根牙本質結構之觀察 23
6.1.1 牙冠部分 23
6.1.2 牙根軀幹部分 23
6.1.3 牙根冠部 24
6.1.4 牙根中段部分 24
6.2 複合樹脂與根管內牙本質鍵結強度之測試 24
6.2.1 推離鍵結強度 25
6.2.2 推離鍵結測試之施力-變形量圖中斜率 25
6.2.3 試片斷面之電子顯微鏡觀察 25
6.2.4 綜合討論 25
6.3 新研發低聚合收縮樹脂基質之後膠聚合收縮力測量26
6.3.1 最終收縮量 26
6.3.2 熱膨脹量 27
第七章 結論 28
第八章 未來研究方向 30
參考文獻 31
Anic I, Shirasuka T, Matsumoto K (1995). Scanning electron microscopic evaluation of two compaction techniques using a composite resin as a canal filling material. J Endodn 21:594-8.

Balogh MB, and Febrenbach MJ (1997). Illustrated dental embryology, histology, and anatomy. W.B. Saunders company.

Berkovitz BKB, Boyde A, Frank RM et al. (1989). Handbook of microscopic anatomy Volume V/6: Teeth. Springer-Verlag Berlin Heidelberg.

Bex RT, Parker MW, Judkins JT, Pelleu GB (1992). Effect of dentinal bonded resin post-core preparations on resistance to vertical root fracture. J Prosth Dent 67:768-72.

Bowen RL (1958). Synthesis of a silica-resin direct filling material: progress report. J Dent Res 37:90.

Braga RR, Ferracane JL (2004). Alternatives in polymerization contraction stress management. Crit Rev Oral Biol Med 15(3):176-184.

Buonocore M, Wileman W, Brudevold F (1955). A report on a resin composition capable of bonding to human dentin surfaces. J Dent Res 35:846-51.

Carter JM, Sorensen SE, Johnson RR, Teitelbaum RL, Levine MS (1983). Punch shear testing of extracted vital and endodontically treated teeth. J Biomechanics 16(10):841-848.

Davidson CL, de Gee AJ, Feilzer A (1984). The competition between the composite-dentin bond strength and the polymerization contraction stress. J Dent Res 63(12):1396-1399.

Davidson CL, Feilzer A (1997). Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25(6):435-440.
Dewaele M, Truffier-Boutry D, DevauxJ, Leloup G (2006). Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited. Dent Mater 22(4):359-65.

Ferracane JL (2005). Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 21:36-42.

Fosse G, Saele PK, Eide R (1992). Numerical density and distributional pattern of dentin tubules. Acta Odontologica Scandica 50:201-210.

Freedman GA (2001). Esthetic post-and-core treatment. Dent Clin Nor Am 45(1):103-116.

Garberoglop R & Brännström M (1976). Scanning electron microscopic investigation of human dentinal tubules. Archs Oral Biol 21:355-362.

Giannini M, Carvalho RM, Martins LRM, Dias CTS, Pashley DH (2001). The influence of tubule density and area od solid dentin on bond strength of two adhesive systems to dentin. J Adhesive Dent 3:315-324.

Gluskin AH, Radke RA, Frost SL, Watanabe LG (1995). The mandibular incisor: rethinking quidelines for post and core design. J Endod 21:33-7.

Guzy GE, Nicholls JI (1979). In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent 42:39-44.

Isidor F, Brondum K (1992). Intermittent loading of teeth with tapered, individually cast ot prefabricated, parallel-sided posts. Int J Prosthodont 5:257-61.

Jorgensen KD, Asmussen E, Shimokobe H (1975). Enamel damages caused by contracting restorative resins. Scan J Dent Res 83(2):120-2.

Kalachandra S, Kusy RP (1991). Comparison of water sorption by methacrylate and dimethacrylate monomers and their corresponding polymers. Polymer 32:2428-2434.

Kalachandra S, Taylor DF, DePorter CD, Grubbs HJ, McGrath JE (1993). Polymeric materials for composite matrixes in biological environments. Polymer 34:778-782.

Kishen A, Kumar GV, Chen NN (2003) Stress-strain response in human dentine: rethinking fracture predilection in postcore restored teeth. Dent Traumatol 20:90-100.

Lui JL (1994). Composite resin reinforcement of flared canals using light-transmitting plastic posts. Quintessence Int 25:313-319.

Mannocci F, Bertelli E, Watson TF, Ford TP (2003). Resin-dentin interfaces of endodontically treated restored teeth. Am J Dent 16(1):28-32.

Marshall GW, Marshall SJ, Kinney JH, Balooch M (1997). The dentin substrate: structure and properties related to bonding. J Dent 25:441-458.

Meredith N, Setchell DJ (1997). In vitro measurement of cuspal strain and displacement in composite restored teeth. J Dent 25(3):331-7.

Mjör IA and Nordahl I (1996). The density and branching of dentinal tubules in human teeth. Arch Oral Biol 41(5):401-412.

Moszner N, Salz U, Zimmermann J (2005). Chemical aspects of self-etching enamel-dentin adhesives: A systemic review. Dent Mater 21:895-910.

Nakabayashi N, Kojima K, and Masuhara E (1982). Promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 16:265-273.

Nomoto R, Carrick TE, McCabe JF (2001). Suitability of a shear punch test for dental restorative materials. Dent Mater 17:415-421.
Pashley DH (2002). Seltzer and Bender’s dental pulp ch.4 Pulpodentin complex. Quintessence Publishing.

Pashley DH and Carvalho RM (1997). Dentine permeability and dentine adhesion. J Dent 25:355-372.

Peutzfeldt A (1997). Resin composites in dentistry: the monomer system. Eur J Oral Sci 105:97-116.

Ray HA. Trope M. (1995). Periapical status of endodontically treated teeth in relation to the technical quality of the root filling and the coronal restoration. Int Endod J 28(1):12-8.

Roberts JC, Powers JM, Craig RG (1977). Fracture toughness of composite and unfilled restorative resins. J Dent Res 56(7):748-53.

Roydhouse RH (1970). Punch-shear test for dental purposes. J Dent Res 49(1):131-136.

Sakaguchi RL, Sasil CT, Bunczak MA, Douglas WH (1991). Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent 19:312-6.

Sakaguchi RL, Versluis A, Gouglas WH (1997). Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dent Mater 13:233-239.

Sakaguchi RL, Wiltbank BD, Shah NC (2004). Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater 20:388-396.

Saupe WA, Gluskin AH, Radke Jr RA (1996). A comparative study of fracture resistance between morphologic dowel system in the intraradicular restoration of structurally compromised roots. Quintessence Int 27:483-491.

Schellenberg U et al (1992). Numerical density of dentinal tubules at the pulpal wall of human permanent premolars and third molars. J Endod 18(3):104-109.

Schilke R, Lisson JA, Baub O, Geurtsen W (2000). Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Bio 45:355-361.

Sirimai S, Riis DN, Morgano SM (1999). An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and core systems. J Prosth Dent 81:262-9.

Smith DC, Cooper WEG (1971). The determination of shear strength. Brit Dent J 130:333-337.

Suliman AH, Boyer DB, Lakes RS (1994). Polymerization shrinkage of composite resins:comparison with tooth deformation. J Prosthet Dent 71(1):7-12.

Suzuki T, Finger WJ (1988). Dentin adhesives: site of dentin vs. bonding of composite resins. Dent Mater 4:379-383.

Tay FR, Loushine RJ, Lambrechts P, Weller RN, Pashley DH (2005). Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach. J Endod 31(8):584-589.

Torabinejad M. Ung B. Kettering JD (1990). In vitro bacterial penetration of coronally unsealed endodontically treated teeth. J Endod 16(12):566-9.

Wenner KK et al. (1988). Microleakage of root restorations. J Am Dent Assoc 117(7):825-8.

Window AL, Holister GS (1989). Strain gauge technology. Elsevier applied science, London and New York.

褚文煌 (1998). 人類牙本質脆性機轉之研究. 國立台灣大學醫學院牙醫科學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top