跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃嵩崴
研究生(外文):Song-Wei Huang
論文名稱:利用基因轉殖過量表現或抑制方法探討TransformingGrowthFactor‐β3和SonicHedgehog在斑馬魚顱顏組織眼睛發育之功能
論文名稱(外文):Functional Analyses of Transforming Growth Factor‐β3 (TGF‐β3) and Sonic Hedgehog (Shh) during Eye Development of Zebrafish by Transgenic Over-expression and Down-regulation Assays
指導教授:張百恩
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:口腔生物科學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:斑馬魚眼睛發育過量表現抑制方法
外文關鍵詞:TGF‐β3ShhOver-expressionDown-regulationZebrafish
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Transforming growth factor-β family (TGF-β family)和Sonic Hedgehog在胚胎早期的發育中,扮演很重要的調控角色。以神經管發育為例,TGF-β family在神經管的背部大量表現,而Sonic Hedgehog在神經管的腹面大量表現,這兩種基因產物同時以濃度梯度的方式,向神經管方向擴散並且影響神經管的發育。

本研究想要探討TGF-β family和Sonic Hedgehog在眼睛的發育中是否一樣扮演如此重要的角色。之前的研究中指出,TGF-β3會大量表現在斑馬魚的水晶體中,因此我以TGF-β3為研究對象並構築了pCr1.3-TGF-β3-full-length-IRES-hrGFP以及pCr1.3-TGF-β3-antisense- IRES-hrGFP結構體,並利用顯微注射方法將這兩種結構體注入斑馬魚受精卵中。透過斑馬魚βB1-Crystallin 1.3 kb啟動子驅動TGF-β3- full-length cDNA或TGF-β3-antisense cDNA在水晶體專一表現mRNA,使得TGF-β3蛋白過量表現或者抑制內生性TGF-β3蛋白表現,並藉由綠色螢光蛋白之表現觀察得知此轉殖斑馬魚帶有欲表現的結構體。

結果在TGF-β3過量表現方面,篩選到六個轉殖恆定品系分別為4號、5號、9號、10號、11號、21號,其中以4號水晶體綠色螢光蛋白表現最均勻而且強度最強。因此我仔細觀察4號的眼睛外表型,發現瞳孔有變小的現象,並將其受精後7天的水晶體取下,發現水晶體比野生型小,而且二級纖維細胞也尚未形成。此外,除了水晶體大小發生異常之外,也發現在透明的水晶體中央出現混濁且不透明的區域。至於在抑制內生性TGF-β3蛋白表現方面,結果只篩選到一個轉殖恆定品系23號,而且此恆定品系水晶體綠色螢光蛋白表現非常微弱。在眼睛外表型的觀察也與野生型沒有太大的差別,可能是由於表現量不足,使外表型變化不大;另外也可能由於TGF-β family中的其他成員有類似於TGF-β3的作用,因此產生基因功能上的重疊互補性(redundancy)。

而在Sonic Hedgehog方面,利用先前的研究結果(王偉庭, 2005)-藉由βB1晶體蛋白(βB1-crystallin)啟動子在斑馬魚水晶體異位過量表現Shh。藉由觀察其所篩選到的轉殖恆定品系19號,發現眼睛視網膜外形呈球狀,不同於野生型呈杯狀。進一步利用組織切片分析,發現視網膜細胞在CMZ (ciliary marginal zone)區域似乎有增生的現象,然而神經視網膜的分層並沒有顯著的影響。

因此,從目前實驗結果推測TGF-β3以及Shh可能對於斑馬魚眼睛組織扮演不同的調控角色。TGF-β3可能會影響水晶體的發育,甚至與白內障的形成有關。而Shh則對視網膜細胞的增生有顯著的影響。但是更詳細之相關機制必須利用in situ hybridization、immunohisto -chemistry等方法才能對TGF-β3或Shh如何影響眼睛發育有更完整的了解。
Transforming growth factor-β family (TGF-β family) and Sonic Hedgehog play critical roles in regulating early developmental processes of embryo. For example, TGF-β family is expressed in the dorsal neural tube, whereas Sonic Hedgehog is expressed in the ventral neural tube. Both proteins diffuse and pattern the neural tube depending on the function of the concentration gradient.

The aim of this study was to elucidate the function of TGF-β family and Sonic Hedgehog in the eye development of zebrafish. In the previous study, TGF-β3 has been shown to be expressed strongly in the lens of zebrafish. Therefore, I have constructed the pCr1.3-TGF-β3-full-length- IRES-hrGFP and pCr1.3-TGF-β3-antisense-IRES-hrGFP chimeric genes, and these two constructs were micro-injected into the zebrafish eggs. The lens-specific βB1-crystallin promoter drives the expression of TGF-β3- full-length and TGF-β3-antisense cDNA in the lens. In this way, TGF-β3 can be over-expressed or downregulated in the lens, and simultaneously the transgenic fish containing these constructs can be screened by the expression of GFP.

Six stable transgenic zebrafish lines were obtained (No.4, No.5, No.9, No.10, No.11, and No.21) with the pCr1.3-TGF-β3-full-length- IRES- hrGFP construct. The expression of GFP was evenly distributed in the lens of the No.4 stable line, the strongest among the TGF-β3-full- length stable lines. I found the pupil of the No.4 stable line seemed to be smaller than wild type fish. Then I excised the lens out of 7 days-post- fertilization (7 dpf) embryo and found the lens was indeed smaller than those of wild type fish. Moreover, the secondary lens fibers were not formed normally. In addition to the abnormal lens size, I also observed that there was a cloudy and opaque region in the eye lens.

As regarding antisense approach, only one TGF-β3-antisense stable transgenic zebrafish line was obtained (No.23), and the expression of GFP in the lens of this stable line was very weak. It is probably that the expression of TGF-β3-antisense was not sufficient to affect the phenotype of the lens. An alternative explanation is that the absence of a conspicuous phenotype may reflect the functional redundancy of the TGF-β family in the lens.

According to the previous result (Wang, 2005)-using zebrafish lens- specific βB1-Crystallin 1.3 kb promoter fragment (Cr1.3) to drive ectopic overexpression of Shh in the lens, I observed the stable transgenic zebrafish line No.19 for study. I found that the silhouette of retina has changed. Through sectioning, it seems that the CMZ (ciliary marginal zone) has proliferated, whereas the stratification of neural retina appears normal in the line No.19.

In the preliminary results, TGF-β family and Shh may play different roles in regulating the eye development of zebrafish. TGF-β3 could influence the lens development, even implicated in the occurrence of cataract. And Shh may affect the proliferation of neural retina cells. In the future, in situ hybridization and other methods may be applied to elucidate the more detailed function of TGF-β3 and Shh during the eye development of zebrafish.
中文摘要 1
英文摘要 3
壹、前言 5
貳、實驗材料 34
參、實驗方法 40
肆、結果 51
伍、討論 60
陸、圖表 68
參考文獻 85
Altaba, A., Sanchez, P., and Dahmane, N., 2002. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer. 2, 361-372.
Amato, M.A., Boy, S., and Perron, M., 2004. Hedgehog signaling in vertebrate eye development: a growing puzzle. Cell Mol. Life Sci. 61, 899-910.
Anchan, R.M. and Reh, T.A., 1995. Transforming growth factor-beta-3 is mitogenic for rat retinal progenitor cells in vitro. J. Neurobiol. 28, 133-145.
Ball, E.M. and Risbridger, G.P., 2001. Activins as regulators of branching morphogenesis. Dev. Biol. 238, 1-12.
Bilotta, J. and Saszik, S., 2001. The zebrafish as a model visual system. Int. J. Dev. Neurosci. 19, 621-629.
Bottner, M., Krieglstein, K., and Unsicker, K., 2000. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J. Neurochem. 75, 2227-2240.
Cayuso, J. and Marti, E., 2005. Morphogens in motion: growth control of the neural tube. J. Neurobiol. 64, 376-387.
Chang, H., Brown, C.W., and Matzuk, M.M., 2002. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr. Rev. 23, 787-823.
Cheah, F.S., Jabs, E.W., and Chong, S.S., 2005. Genomic, cDNA, and embryonic expression analysis of zebrafish transforming growth factor beta 3 (tgfbeta3). Dev. Dyn. 232, 1021-1030.
Chin, D., Boyle, G.M., Parsons, P.G., and Coman, W.B., 2004. What is transforming growth factor-beta (TGF-beta)? Br. J. Plast. Surg. 57, 215-221.


Chomczynski, P. and Sacchi, N., 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
Chow, R.L. and Lang, R.A., 2001. Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol. 17:255-96., 255-296.
Chuang, P.T. and Kornberg, T.B., 2000. On the range of hedgehog signaling. Curr. Opin. Genet. Dev. 10, 515-522.
Cohen, M.M., Jr., 2003. The hedgehog signaling network. Am. J. Med. Genet. A. 123, 5-28.
Dahmane, N. and Altaba, A., 1999. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 126, 3089-3100.
Dakubo, G.D. and Wallace, V.A., 2004. Hedgehogs and retinal ganglion cells: organizers of the mammalian retina. Neuroreport. 15, 479-482.
de Crombrugghe, B., Lefebvre, V., and Nakashima, K., 2001. Regulatory mechanisms in the pathways of cartilage and bone formation. Current Opinion in Cell Biology 13, 721-728.
Derynck, R. and Zhang, Y.E., 2003. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425, 577-584.
Donovan, S.L. and Dyer, M.A., 2005. Regulation of proliferation during central nervous system development. Semin. Cell Dev. Biol. 16, 407-421.
Duenker, N., 2005. Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina. Int. Rev. Cytol. 245:17-43., 17-43.
Dyer, M.A. and Bremner, R., 2005. The search for the retinoblastoma cell of origin. Nat. Rev. Cancer. 5, 91-101.
Dyer, M.A. and Cepko, C.L., 2001. Regulating proliferation during retinal development. Nat. Rev. Neurosci. 2, 333-342.

Easter, J. and Nicola, G.N., 1996. The Development of Vision in the Zebrafish (Danio rerio). Developmental Biology 180, 646-663.
Esteve, P. and Bovolenta, P., 2006. Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr. Opin. Neurobiol. 16, 13-19.
Fini, M.E., Strissel, K.J., and West-Mays, J.A., 1997. Perspectives on eye development. Dev. Genet. 20, 175-185.
Flugel-Koch, C., Ohlmann, A., Piatigorsky, J., and Tamm, E.R., 2002. Disruption of anterior segment development by TGF-beta1 overexpression in the eyes of transgenic mice. Dev. Dyn. 225, 111-125.
Furuta, Y. and Hogan, B.L., 1998. BMP4 is essential for lens induction in the mouse embryo. Genes Dev. 12, 3764-3775.
Goetz, J.A., Suber, L.M., Zeng, X., and Robbins, D.J., 2002. Sonic Hedgehog as a mediator of long-range signaling. Bioessays. 24, 157-165.
Goishi, K., Shimizu, A., Najarro, G., Watanabe, S., Rogers, R., Zon, L.I., and Klagsbrun, M., 2006. αA-crystallin expression prevents {gamma}-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens. Development. 133, 2585-2593.
Gordon-Thomson, C., de Iongh, R.U., Hales, A.M., Chamberlain, C.G., and McAvoy, J.W., 1998. Differential cataractogenic potency of TGF-beta1, -beta2, and -beta3 and their expression in the postnatal rat eye. Invest Ophthalmol. Vis. Sci. 39, 1399-1409.
Graw, J., 2003. The genetic and molecular basis of congenital eye defects. Nat. Rev. Genet. 4, 876-888.
Harrison, C.A., Wiater, E., Gray, P.C., Greenwald, J., Choe, S., and Vale, W., 2004. Modulation of activin and BMP signaling. Mol. Cell Endocrinol. 225, 19-24.
Hill, R.E., Heaney, S.J., and Lettice, L.A., 2003. Sonic hedgehog: restricted expression and limb dysmorphologies. J. Anat. 202, 13-20.

Ho, K.S. and Scott, M.P., 2002. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Current Opinion in Neurobiology 12, 57-63.
Hooper, J.E. and Scott, M.P., 2005. Communicating with Hedgehogs. Nat. Rev. Mol. Cell Biol. 6, 306-317.
Huangfu, D. and Anderson, K.V., 2006. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development. 133, 3-14.
Ingham, P.W. and Fietz, M.J., 1995. Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr. Biol. 5, 432-440.
Ingham, P.W. and McMahon, A.P., 2001. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059-3087.
Ittner, L.M., Wurdak, H., Schwerdtfeger, K., Kunz, T., Ille, F., Leveen, P., Hjalt, T.A., Suter, U., Karlsson, S., Hafezi, F., Born, W., and Sommer, L., 2005. Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. J. Biol. 4, 11.
Kalderon, D., 2004. Hedgehog signaling: Costal-2 bridges the transduction gap. Curr. Biol. 14, R67-R69.
Keski-Oja, J., Koli, K., and von, M.H., 2004. TGF-beta activation by traction? Trends Cell Biol. 14, 657-659.
Kimelman, D. and Griffin, K.J., 2000. Vertebrate mesendoderm induction and patterning. Curr. Opin. Genet. Dev. 10, 350-356.
Knight, P.G., 1996. Roles of inhibins, activins, and follistatin in the female reproductive system. Front Neuroendocrinol. 17, 476-509.
Krieglstein, K., Strelau, J., Schober, A., Sullivan, A., and Unsicker, K., 2002. TGF-beta and the regulation of neuron survival and death. J. Physiol Paris. 96, 25-30.
Lang, R.A., 2004. Pathways regulating lens induction in the mouse. Int. J. Dev. Biol. 48, 783-791.
Livesey, F.J. and Cepko, C.L., 2001. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109-118.
Lum, L. and Beachy, P.A., 2004. The Hedgehog response network: sensors, switches, and routers. Science. 304, 1755-1759.
Marti, E. and Bovolenta, P., 2002. Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 25, 89-96.
Martinez-Morales, J.R., Rodrigo, I., and Bovolenta, P., 2004. Eye development: a view from the retina pigmented epithelium. Bioessays. 26, 766-777.
Masland, R.H., 2001. The fundamental plan of the retina. Nat. Neurosci. 4, 877-886.
Massague, J., 2000. How cells read TGF-beta signals. Nat. Rev. Mol. Cell Biol. 1, 169-178.
Massague, J., Seoane, J., and Wotton, D., 2005. Smad transcription factors. Genes Dev. 19, 2783-2810.
Mehlen, P., Mille, F., and Thibert, C., 2005. Morphogens and cell survival during development. J. Neurobiol. 64, 357-366.
Moshiri, A., Close, J., and Reh, T.A., 2004. Retinal stem cells and regeneration. Int. J. Dev. Biol. 48, 1003-1014.
Moshiri, A., McGuire, C.R., and Reh, T.A., 2005. Sonic hedgehog regulates proliferation of the retinal ciliary marginal zone in posthatch chicks. Dev. Dyn. 233, 66-75.
Neuhauss, S.C., 2003. Behavioral genetic approaches to visual system development and function in zebrafish. J. Neurobiol. 54, 148-160.
Neumann, C.J., 2001. Pattern formation in the zebrafish retina. Semin. Cell Dev. Biol. 12, 485-490.
Neumann, C.J. and Nuesslein-Volhard, C., 2000. Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science. 289, 2137-2139.

Nusslein-Volhard C, W.E., 1980. Mutations affecting segment number and polarity in Drosophila. Nature. 287, 795-801.
Nybakken, K. and Perrimon, N., 2002. Hedgehog signal transduction: recent findings. Curr. Opin. Genet. Dev. 12, 503-511.
O''Connor, M.B., Umulis, D., Othmer, H.G., and Blair, S.S., 2006. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development. 133, 183-193.
Oliver, G. and Gruss, P., 1997. Current views on eye development. Trends Neurosci. 20, 415-421.
Padgett, R.W. and Patterson, G.I., 2001. New Developments for TGFβ. Developmental Cell 1, 343-349.
Panman, L. and Zeller, R., 2003. Patterning the limb before and after SHH signalling. J. Anat. 202, 3-12.
Pasca di, M.M. and Hebrok, M., 2003. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer. 3, 903-911.
Sariola, H. and Saarma, M., 2003. Novel functions and signalling pathways for GDNF. J. Cell Sci. 116, 3855-3862.
Schier, A.F. and Shen, M.M., 2000. Nodal signalling in vertebrate development. Nature. 403, 385-389.
Shi, Y. and Massague, J., 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113, 685-700.
Siegel, P.M. and Massague, J., 2003. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat. Rev. Cancer. 3, 807-821.
Srinivasan, Y., Lovicu, F.J., and Overbeek, P.A., 1998. Lens-specific expression of transforming growth factor beta1 in transgenic mice causes anterior subcapsular cataracts. J. Clin. Invest. 101, 625-634.
Streit, A. and Stern, C.D., 1999. Neural induction. A bird''s eye view. Trends Genet. 15, 20-24.

Torroja, C., Gorfinkiel, N., and Guerrero, I., 2005. Mechanisms of Hedgehog gradient formation and interpretation. J. Neurobiol. 64, 334-356.
Unsicker, K., Meier, C., Krieglstein, K., Sartor, B.M., and Flanders, K.C., 1996. Expression, localization, and function of transforming growth factor-beta s in embryonic chick spinal cord, hindbrain, and dorsal root ganglia. J. Neurobiol. 29, 262-276.
van den, H.M., 2003. Hedgehog signalling: off the shelf modulation. Curr. Biol. 13, R686-R688.
von, B.A. and Cho, K.W., 2001. Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev. Biol. 239, 1-14.
Waite, K.A. and Eng, C., 2003. From developmental disorder to heritable cancer: it''s all in the BMP/TGF-beta family. Nat. Rev. Genet. 4, 763-773.
Wakefield, L.M. and Roberts, A.B., 2002. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22-29.
Wawersik, S., Purcell, P., Rauchman, M., Dudley, A.T., Robertson, E.J., and Maas, R., 1999. BMP7 acts in murine lens placode development. Dev. Biol. 207, 176-188.
Westerfield, M., 1999. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 3rd Ed. University of Oregon Press, Eugene, OR. 220pp. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio).
Whitman, M., 1998. Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev. 12, 2445-2462.
Yang, X.J., 2004. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin. Cell Dev. Biol. 15, 91-103.
Yingling, J.M., Blanchard, K.L., and Sawyer, J.S., 2004. Development of TGF-beta signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov. 3, 1011-1022.
Yu, J., Carroll, T.J., and McMahon, A.P., 2002. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 129, 5301-5312.

侯欣翰 (2003) 藉由綠色螢光蛋白在顱顏組織專一的表現來分析βB1-Crystallin基因的啟動子。國立台灣大學口腔生物科學研究所碩士論文。

王偉庭 (2005) 利用基因轉殖異位超量表現方法分析Sonic Hedgehog在斑馬魚眼睛視網膜發育過中所扮演之功能。國立台灣大學口腔生物科學研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top