跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:步文翔
研究生(外文):Wen-Hsiang Pu
論文名稱:考慮可控制前置時間及品質改善投資之多買家整合性存貨模式
論文名稱(外文):A single-vendor multiple-buyer integrated inventory model involving deterministic variable lead time and quality improvement investments
指導教授:潘昭賢潘昭賢引用關係
指導教授(外文):Jason Chao-Hsien Pan
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:46
中文關鍵詞:品質改善投資前置時間整合性存貨模式
外文關鍵詞:Quality improvement investment.Lead timeIntegrated inventory model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
企業要在快速且激烈的市場競爭,必須建置一個自身參與的供應鏈並且應用及時化(Just-in-time)生產的方法去提升採購及存貨管理的績效。在建置供應鏈長期合作關係的過程中,能提供較短的前置時間交期及良好品質的供應商在爭取客戶的訂單及滿意度是較具競爭力的;此外,能提供優良服務的供應商一旦取得來自多個客戶的訂單,如何妥善安排供應滿足需求是管理者的重要課題,而適量的存貨準備一直是企業調節供需的重要手段。因此,在存貨及交貨政策方面,買賣雙方必須考慮整體利益來做出最適決策以達到總相關成本最小化。
本研究旨在針對前置時間內需求量服從常態分配的假設下,提出兩個單一供應商及多買家的整合性存貨模式使得買方與賣方總存貨成本最小化,並求得最適存貨政策。在第一個模式中,我們假設製程是完美的並且視前置時間為可控制變數,而前置時間可以在付出額外的趕工成本下縮短,並提出一個求解演算法。在第二個模式中,我們放寬完美製程的假設去考慮製程不良的機率,並加入品質改善投資選項,同時提供一個求解演算法。此外,提出不同買家數量的數值範例來加以說明。
Competing in rapid and violent marketplace, firms construct their own supply chain system and apply the means of Just-in-time (JIT) production to enhance their purchasing and inventory management performance. In the creation of long-term partnership in supply chain, the vendor who can provide consistent quality and short delivery lead time is easily to gain customers’ satisfaction and order. Furthermore, once a vendor can provide good service to acquire order from multiple buyer, the suitable decision of inventory and delivery policy should be considered by both parties from a whole benefits for minimizing the total relevant cost in the integrated inventory model.
This paper develops two single-vendor multiple-buyer integrated inventory models for minimizing the total relevant annual costs incurred by the vendor and the buyers. The objective is to determine the optimal inventory policies while the probability distribution of lead time demand is normal. First we assume that the process is perfect and lead time is controllable and can be shortened at an extra crashing cost, an algorithm is developed to find the optimal solution. Then, we relax the assumption of perfect process to consider the probability of process being out-of-control, and the option of investing in process quality improvement is included, an algorithm is developed to find the optimal solution. Finally, numerical examples for deferent number of buyer are given to illustrate the results.
中文摘要 I
ABSTRACT II
ACKNOWLEGEMENT III
CONTENTS IV
TABLE INDEX V
FIGURE INDEX VI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 4
2.1 Lead time 4
2.2 Quality improvement investment 5
2.3 Integrated inventory model 5
CHAPTER 3 A SINGLE-VENDOR MULITI-BUYER INVENTORY MODEL WITH CONTROLLABLE LEAD TIME 8
3.1 Notation 8
3.2 Assumptions 8
3.3 A model with normally distribution demand 9
3.3.1 The vendor’s total cost 9
3.3.2 The buyers’ total cost 11
3.3.3 The joint total expected cost 12
3.4 Algorithm 16
3.5 Numerical illustration 17
3.6 Sensitivity analysis 19
CHAPTER 4 AN INTEGRATED MODEL WITH CONTROLLABLE LEAD TIME AND QUALITY IMPROVEMENT INVESTMENT 25
4.1 Notation 25
4.2 Assumption 25
4.3 A basic model 26
4.4 Investment in quality improvement 26
4.5 Algorithm 30
4.6 Numerical illustration 31
CHAPTER 5 CONCLUSIONS AND FUTURE STUDY SUGGESTIONS 37
REFERENCES 39
APPENDIX 41
1. Banerjee, A., (1986). A joint economic lot size model for purchaser and vender. Decision Sciences, 17: 292-311.
2. Ben-Daya, M. and Raouf, A., (1994). Inventory models involving lead time as a decision variable. Journal of the Operation Research Society, 45: 579-582.
3. Goyal, S. K., (1976). An integrated inventory model for a single supplier-single customer problem. International Journal and Production Research, 15: 107-111.
4. Goyal, S. K., (1988). A joint economic lot size model for purchaser and vendor: A comment. Decision Sciences, 19: 236-241.
5. Goyal, S. K. and Gupta, Y. P., (1989). Integrated inventory models: the buyer-vendor coordination. European Journal of Operational Research, 41: 261-269.
6. Goyal, S.K. and Srinivasan G., (1992). The individually responsible and rational decision approach to economic lot sizes for one vendor and many purchasers: a comment. Decision Sciences, 23: 777-784.
7. Ha, D. and Kim, S. L., (1997). Implementation of JIT purchasing: an integrated approach. Production Planning & Control, 8:152-157.
8. Hong, J. D. and Hayya, J. C., (1995). Joint investment in quality improvement and setup reduction. Computer & Operations Research, 22: 567-574.
9. Joglekar, P., (1988). Comments on a quantity discount pricing model to increase vendor profit. Management Science, 34: 1391-1398.
10. Keller, G. and Noori, H., (1988). Impact of investing in quality improvement on the lot size model. OMEGA International Journal of Management Sciences, 15: 595-601.
11. Khan, L. R. and Sarker, R. A., (1999). An optimal batch size for a production system operating under periodic delivery policy. Computers & Industrial Engineering, 37: 711-730.
12. Khan, L. R. and Sarker, R. A., (2002). An optimal batch size for a JIT manufacturing system. Computers & Industrial Engineering, 42:127-136.
13. Liao, C. J. and Shyu, C. H., (1991). An Analytical determination of lead time with normal demand. International Journal of Operations & Production Management, 11: 72-78.
14. Lu, L., (1995). A one-vendor multi-buyer integrated inventory model. European Journal of Operational Research, 81: 312-323.
15. Moon, I. and Choi, S., (1998). A note lead time and distributional assumptions in continuous review inventory models. Computers & Operations Research, 25: 1007-1012.
16. Ouyang, L. Y., Chen, C. K. and Chang, H. C., (2002). Quality improvement, setup cost and lead-time reductions in lot size reorder point models with an imperfect production process. Computers & Operations Research, 29: 1701-1717.
17. Ouyang, L. Y. and Chang, H. C., (2000). Impact of investing in quality improvement on (Q, r, L) model involving imperfect production process. Production Planning & Control, 11: 598-607.
18. Ouyang, L. Y., Yen, N. C. and Wu, K. S., (1996). Mixture inventory model with backorders and lost sales for variable lead time. Journal of the Operational Research Society, 47: 829-832.
19. Pan, J. C. H. and Yang, J. S., (2002). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40: 1263-1273.
20. Porteus, E. L., (1986). Optimal lot sizing, process quality improvement and setup cost reduction. Operations Research Society, 34: 137-144.
21. Rosenblantt, M. J. and Lee, H. L., (1986). Economic production cycles with imperfect production processes. IIE Transactions, 18: 48-55.
22. Siajadi, H., Ibrahim, R. N., and Lochert, P. B., (2005). A single-vendor multiple-buyer inventory model with a multiple-shipment policy. International Journal of Advanced Manufacturing Technology, 27: 1030-1037.
23. Tersine, R. J., (1982). Principles of Inventory and Materials Management. New York: North Holland.
24. Waters, D., (2003). Inventory control and management 2nd edition. New York: John Wiley.
25. Woo, Y. Y., Hsu, S.L. and Wu, S., (2001). An integrated inventory model for a single vendor and multiple buyers with ordering cost reduction. International Journal of Production Economics, 73: 203-215.
26. Yang, J. S. and Pan, J. C. H., (2004). Just-in-time purchasing: an integrated inventory model involving deterministic variable lead time and quality improvement investment. International Journal of Production Research, 42: 853-863.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊