跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:赫曼
研究生(外文):Herman Lim
論文名稱:Miniemulsion Polymerization of Styrene and Methyl Methacrylate
論文名稱(外文):Miniemulsion Polymerization of Styrene and Methyl Methacrylate
指導教授:陳崇賢陳崇賢引用關係
指導教授(外文):Chern, C. S.
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:94
中文關鍵詞: styrenemethyl methacrylateminiemulsion polymerization
外文關鍵詞:styrenemethyl methacrylateminiemulsionpolymerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
Miniemulsions stability of two and three-component systems (STY, MMA and SMA) were investigated. The increased Ostwald ripening rate with the MMA content shows that the relatively high water solubility MMA could act as a monomer diffusion accelerator. Equation was modified to in order to explain the experimental data. From curve fitting, the empirical parameter k is 555.77 and is cm3/s. The approximate water solubility of SMA based on this work is estimated to be ml/ml.
The incorporation of water insoluble dye was used to investigate monomer droplet nucleation mechanism in miniemulsion polymerization. The concentration of SDS was below its CMC, the formation of micelles could be avoided and thus eliminate the micellar nucleation. This then limited the reaction mechanism to homogeneous nucleation and monomer droplet nucleation. The extent of each mechanism was studied by using mixture of two different water solubility monomers, STY and MMA. Np/Nm values tell that another homogeneous nucleation plays an important role for high MMA content system. The polymer composition support the postulation that at the early stage of reaction, the more hydrophilic monomer (MMA) will be attacked more severely by free radicals than hydrophobic monomer. The homogeneous nucleation extent increases as MMA content is increased, as shown by the decreased Nd and increasing Nα. The polymer composition suggests that at the early stage of reaction, the more hydrophilic monomer (MMA) will be attacked more severely by free radicals than hydrophobic monomer. Furthermore, final latex surface potential data and molecular weight data also support this statement.
Miniemulsions stability of two and three-component systems (STY, MMA and SMA) were investigated. The increased Ostwald ripening rate with the MMA content shows that the relatively high water solubility MMA could act as a monomer diffusion accelerator. Equation was modified to in order to explain the experimental data. From curve fitting, the empirical parameter k is 555.77 and is cm3/s. The approximate water solubility of SMA based on this work is estimated to be ml/ml.
The incorporation of water insoluble dye was used to investigate monomer droplet nucleation mechanism in miniemulsion polymerization. The concentration of SDS was below its CMC, the formation of micelles could be avoided and thus eliminate the micellar nucleation. This then limited the reaction mechanism to homogeneous nucleation and monomer droplet nucleation. The extent of each mechanism was studied by using mixture of two different water solubility monomers, STY and MMA. Np/Nm values tell that another homogeneous nucleation plays an important role for high MMA content system. The polymer composition support the postulation that at the early stage of reaction, the more hydrophilic monomer (MMA) will be attacked more severely by free radicals than hydrophobic monomer. The homogeneous nucleation extent increases as MMA content is increased, as shown by the decreased Nd and increasing Nα. The polymer composition suggests that at the early stage of reaction, the more hydrophilic monomer (MMA) will be attacked more severely by free radicals than hydrophobic monomer. Furthermore, final latex surface potential data and molecular weight data also support this statement.
Table of Contents

ACKNOWLEDGEMENT i
TABLE OF CONTENTS ii
FIGURE LIST iv
TABLE LIST vi
ABSTRACT vii

Chapter I Introduction 1
1.1 Emulsion 1
1.2 Emulsion Polymerization 2
1.3 About This Research 3

Chapter II Literature Survey 6
2.1 Stability of Miniemulsion 6
2.1.1 Ostwald Ripening 6
2.1.2 The Prediction of Ostwald Ripening Rate 9
2.1.3 Creaming phenomeon 13
2.2 Particle Nucleation Mechanism 16
2.2.1 Micellar Nucleation 17
2.2.2 Homogeneous Nucleation 18
2.2.3 Particle Droplet Nucleation 19
2.3 Literature Survey of Miniemulsion Polymerization 20

Chapter III Experimental 26
3.1 Chemicals 26
3.2 Equipments 26
3.2.1 Laser Particle Size Analyzing System (LPA), Photal 3000/3100 26
3.2.2 Others Equipments 27
3.2.3 Polymerization Reaction Apparatus 27
3.3 Procedure of Experiments 27
3.3.1 Purification of Stearyl Methacrylate 27
3.3.2 Formulation of Dilution Solution 28
3.3.3 Preparation of Miniemulsion 28
3.3.4 Measurement of Monomer Droplet Size or Latex Particle Size by Dynamic Light Scattering (DLS)
29
3.3.5 Miniemulsion Stability Experiment 29
3.3.6 Miniemulsion Batch Polymerization 30
3.3.7 Measurement of Particle Diameter by TEM 31
3.3.8 Measurement of Blue Dye 70 Concentration in Latex Particle 31
3.3.9 Composition Measurement of Latex Product Stopped at Several Reaction Conversions
33
3.4 Experimental Data Analysis 34
3.4.1 Measurement of Miniemulsion Apparent Polymerization Conversion (Gravimetric Method) 34
3.4.2 Calculation of Individual Monomer Conversion for Co-polymerization 34
3.4.3 Calculation of Initial Number of Particles 36
3.4.4 Calculation of Number of Latex Particle of Final Product (by TEM) 36
3.4.5 Calculation of Number of Colloid Particles at Several Conversion (by DLS) 36
3.4.6 Calculation of Number of Monomer Droplets at Different Level of Conversion 37
3.4.7 Calculation of Percentage of Dye that Incorporated into Latex Particle 37
3.4.8 Calculation of Number of Latex Particles that Originating from Monomer Droplet and that Nucleated in Water 38
3.4.9 Calculation of Surface Potential Divided by Specific Surface Area of Polymer Particles 38

Chapter IV Results and Discussion 44
4.1 Miniemulsion Stability 44
4.1.1 Monomer Degradation upon Aging 44
4.1.2 Effect of Monomer Composition on Ostwald Ripening Rate 46
4.2 Miniemulsion Polymerization 54
4.2.1 Conversion of Miniemulsion Polymerization 54
4.2.2 Particle Size Data 56
4.2.3 Pdye Data 59
4.2.4 Composition, Molecular Weight and Surface Potential Data 64

Chapter V Conclusions and Discussion 70
References 72
Appendix A Raw Data 76
Appendix B UV/Vis method to determine individual monomer conversion 92
References

1.Myers D., Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd edition, New York: Wiley, p. 254, 1999.
2.Capek I., C.S. Chern, Adv. Polym. Sci.155:101-65 (2001).
3.Chern C.S.; Tang, H.J. Polym. React. Eng. 11:213 (2003).
4.Kabalnov A.S.,Schukin E.D, Adv. Colloid Interface Sci. 38: 69 (1992)
5.Higuchi WI, Misra J, J Pharm Sci 51:459-66 (1962)
6.F. Joseph Schork, Yingwu Luo, Wilfred Smulders, James P. Russum, Alesandro Butte, Kevin Fontenot, Adv. Polym Sci 175:129-255 (2005)
7.Y.T. Choi (1986) Formation and Stabilization of Miniemulsion and Latexes, Ph.D. Disertation, Lehigh University, Betlehem
8.Blythe PJ, Morrison BR, Mathauer KA, Sudol ED, El-Aasser MS. Langmuir 16:898-904 (2000).
9.Chern C.S, Lin C.H, J Appl. Polym. Sci., Vol. 92, 1961-1969 (2004).
10.Chern C.S, Chen T.J, Colloid Polym. Sci. 275:546 (1997)
11.Kabalnov AS, Makarov KN, Pertzov AV, Shchukin ED, J. Colloid Interf. Sci. 138(1):98-104 (1990)
12.Ugelstad J, Mork PC, Kaggerud KH, Ellingsen T, Berge A. Adv Colloid Interf. Sci. 13:101-40 (1980)
13.Chern CS, T.J. Chen. Colloid Surf, A: Physicochem Eng Asp 138:65-74 (1998)
14.Kabalnov AS, Pertzov AV, Shchukin ED. Colloid Surf 24:19-32 (1987)
15.Lifshitz I.M, Slovzov V.V, J. Phys. Chem. Solids 19:35 (1961)
16.Weiss J, Coupland J.N, Brathwalte D, McClements D.J, Colloids Surf. A 121:53 (1997)
17.Miller C.M, Blythe P.J, Silebi C.A, M.S. El-Aasser, J. Polym. Sci. Part A Polym. Chem. 32:2356 (1994)
18.Chern C.S, Chen T.J, Colloid Polym. Sci. 275: 1060-7 (1997)
19.Chanamai R., Horn G., McClements D.J, Colloid Interface Sci. 247:167 (2002)
20.Tauer K, Polymer 46:1385-1394 (2005)
21.Chern C.S, Y.C. Liou, Macromol. Chem. Phys. 199:2051 (1998)
22.Chen L.J., Lin S.Y, Chern C.S, Wu S.C, Colloids and Surf A 122:161 (1997)
23.Landfester K. Macromol. Symp. 150:171-8 (2000)
24.Ugelstad J, Hansen FK, Lange S. Makromol. Chem 175:507-21 (1974)
25.Harkins W.D, J. Am. Chem. Soc. 69, 1428 (1947).
26.Smith W.V, R.W. Ewart, J. Chem. Phys., 16, 529 (1948).
27.Jacobi B, Angew. Chem., 64, 539 (1952).
28.Priest W. J, J. Phys. Chem., 56, 1077 (1952).
29.Fitch R.M, Tsai C.H, Polym. Colloids, Ed. R. M. Fitch, New York: Plenum, p. 73 (1980).
30.Roe CP, Ind. Eng. Chem. 60:20 (1968).
31.Ugelstad J, El-Aasser M. S, Vanderhoff J. W, J. Polym. Sci., Lett., 11, 503, (1973).
32.Wang S, Schork FJ, J. Appl. Polym. Sci. 54:2157-64 (1994)
33.Blythe PJ, Morrison BR, Mathauer KA, Sudol ED, El-Aasser MS, Macrom 32:6944-51 (1999)
34.Landfester K, Bechthold N, Foster S, Antinietti M, Macromol Rapid Commun 20:81-4 (1999)
35.Choi Y.T, El-Aasser MS, Sudol ED, Vanderhoff JW, J Polym. Sci. Polym Chem 23:2973-87 (1985)
36.Delgado J, El-Aasser MS, Vanderhof JW, J. Polym. Sci. Part A: Polym. Chem. 24:861-74 (1986)
37.Ugelstad J, El Asser MS, Vanderhoff JW., J. Polym. Sci. Letter Ed 11:503-13 (1973)
38.Hansen FK, Ugelstad J, J Polym Sci Polym Chem 17:3069-82 (1979)
39.Reimers J.L, Skelland A. H. P, Schork F.J, Polymer Reaction Engineering 3, 235 (1995), J. Reimers, F.J Schork, J. Appl. Polym. Sci. 59, 1833 (1996)
40.Reimers J, Schork F.J, J. Appl. Polym. Sci. 60, 251 (1996)
41.Chern C.S, Liou Y.C, Chen T.J, Macromol. Chem. Phys. 199, 1315-1322 (1998)
42.Lim M.S, Chen H. J, Polym Sci Part A: Polym Cem 38:1818-27 (2000)
43.Saethre B, Mork PC, Ugelstad J, J Polym Sci Part A: Polym Chem 33:2951-9 (1995)
44.Chamberlain BJ, Napper DH, Gilbert RG, J Chem Soc Faraday Trans 78: 591-606 (1982)
45.Huang H, Zhang H, Li J, Cheng S, Hu F, Tan B. J Appl. Polym. Sci. 68:2029-39, 1998
46.Chern CS, Sheu JC, J Polym Sci A: Polym Chem 38: 3188-99 (2000)
47.Chern C.S, Sheu J.C, Polymer 42:2349-2357 (2001)
48.Chern C.S, Liou Y.C. J. Polym. Sci. Part A: Polym. Chem. 37:2537-50 (1999)
49.Saethre B, Mock PC, Ugelstad J. J. Polym. Sci. Part A: Polym. Chem. 33:2951-9 (1995)
50.Chern C.S, Liou Y.C. Polymer 40:3763-3772 (1999)
51.S Lelu, C Novat, C Graillat, A Guyot, E Bourgeat-Lami, Polym. Int 52:542-547 (2003)
52.Francis V. Loncar, JR. in Analysis, Kinetics and Alkali-swellability of Carboxylated Latexes, A Dissertation Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Polymer Science and Engineering, Lehigh University page 60(1985)
53.Gilbert RG, Pure Appl Chem 68:1491 (1996)
54.El Casella, O Araujo, R. Giudici, Polym React Engng 11,4:869-910 (2003)
55.Harada M, Nomura M, Kojima H, Eguchi W, Nagata S. J Appl. Polym Sci. 16:811 (1972)
56.Ballard MJ, Napper DH, Gilbert RG, J Polym Sci Chem 22:3225-53 (1984)
57.Ballard MJ, Napper DH, Gilbert RG, J Polym Sci Chem 22:3225-53 (1984)
58.Chern C.S, Chang H.T, Polym. Int. 51:1428-1438 (2002)
59.Chern C.S, “Polymerization of Monomer Emulsions”, Encyclopedia of Surface and Colloid Science 1.1 (2005), from http://www2.dekker.com/sdek/ abstract~db=enc~content=a713562133
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top