跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊明倫
研究生(外文):Ming-Lung Yang
論文名稱:紫外線/光觸媒程序外加電位處理含有機染料水溶液之研究
論文名稱(外文):Treatment of Dye Aqueous Solution by UV/TiO2 Process with Applying Bias Potential
指導教授:顧洋顧洋引用關係
指導教授(外文):Young Ku
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:179
中文關鍵詞:偏電壓光觸媒催化Nafion光電催化反應二氧化鈦染料降解
外文關鍵詞:PhotocatalysisPhotoelectrocatalytic reactionNafion 117Bias potential
相關次數:
  • 被引用被引用:4
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要將二氧化鈦披覆於鈦網製成氧化陽極,進行染料溶液(甲基藍,
Methylene Blue 及若丹明B, Rhodamine B)的去色降解,反應程序中以不鏽鋼網製成相
對電極,並添加一偏電壓,以期達到降低電子-電洞對再結合速率,進而提升反應效
率;本研究中且以Nafion 117 質子交換膜代替液態電解質,進行相關探討。研究中
進行探討的動力因子包括溶液pH、紫外光光強度、染料初始濃度、曝氣種類、偏電
壓強度以及電解質濃度。
由實驗結果發現,透過添加偏電壓的方式並無法有效地提升甲基藍的降解速率;
在同時添加偏電壓與Nafion 時,達到最佳的甲基藍去除效果。而若丹明B 方面,相
對於單純光觸媒實驗,以添加偏電壓的方式可以增加15%的去除效果。由於不同的溶
液pH 會造成溶液中不同物種的表面帶電性改變,在靜電力的交互作用下,不僅影響
二氧化鈦對染料分子的吸附能力,也造成不同的反應效率;然而,甲基藍與若丹明B
的最適溶液pH 皆出現在pH 7.0。無論在單純光觸媒或是添加偏電壓的實驗中,較高
的紫外線光強度、溶氧量及電解質濃度都有促進染料降解的效果,而初始濃度效應大
致符合Langmuir-Hinshelwood 模式。
在添加偏電壓的實驗中發現,在不同的溶液pH 下,甲基藍有不同的最適電壓強
度;在pH 5.3 時最適電壓為0.5 V,而在pH 7.0 為0.6 V,更高偏電壓的提升效果有
限。在若丹明B 方面,pH 3.0 及7.0 的最適偏電壓皆為0.4 V,更高的偏電壓反而有
抑制的效果發生。
In this research, Methylene Blue (MB) and Rhodamine B (Rh B) were taken as model pollutants in photocatalytic aqueous reaction. The photocatalytic process with bias potential applied was conducted in aqueous supporting electrolyte and proton exchange membrane (Nafion 117 membrane). The dyestuffs degradation by UV/TiO2 and UV/TiO2/bias processes was experimentally studied by varying the solution pH, UV light intensity, initial dye concentration, gas introduction, supporting electrolyte concentration, and bias potential. Degradation of dye MB was promoted in UV/TiO2/bias process compared with that carried out in UV/TiO2 process, especially as the Nafion membrane was applied. In Rh B experiments, the removal efficiency of experiment conducted in UV/TiO2/bias process was 15% higher than that conducted in UV/TiO2 process. The photocatalytic reaction was controlled strongly by solution pH because of the electrostatic force between TiO2 particles and dye molecules. Under the electrostatic interactions, the best removal efficiencies occurred at pH 7.0 both for MB and Rh B. The photodegradation rates could be assisted by increasing concentration of supporting electrolyte, concentration of dissolving oxygen, or UV light intensity. In UV/TiO2/bias process, the rate constants of MB degradation increased with an increase in bias potential to a certain level, then leveled off. The suitable bias potentials for experiments conducted at pH 5.3 and 7.0 were found to be 0.5 and 0.6 V, respectively. In Rh B treatment, however, the optimum bias potential was found to be 0.4 V at both the pH values, 3.0 and 7.0.
Table of Contents
Acknowledgment……………………………………………………………………………………I
English Abstract………………………………………………………………………………II
Chinese Abstract………………………………………………………………………………III
Table of Contents………………………………………………………………………………IV
List of Figures……………………………………………………………………………….VII
List of Tables…………………………………………………………………………………XII
List of symbols………………………………………………………………………………XIV
Chapter
1 Introduction……………………………………………………………………………………1
1.1 Background……………………………………………………………………………………1
1.2 Objectives and scope………………………………………………………………………2
2 Literature Review……………………………………………………………………………4
2.1 Photocatalyst………………………………………………………………………………4
2.1.1 Basic properties of TiO2………………………………………………………………4
2.1.2 Reactors for UV/TiO2 process…………………………………………………………8
2.1.3 The applications of photocatalyst…………………………………………………11
2.2 Operation factors for UV/TiO2 process………………………………………………12
2.2.1 Effect of light intensity……………………………………………………………20
2.2.2 Effect of gas introduction…………………………………………………………22
2.2.3 Effect of initial concentration……………………………………………………24
2.2.4 Effect of solution pH…………………………………………………………………26
2.3 Operation factors for UV/TiO2/bias process………………………………………33
2.3.1 Effect of bias potential……………………………………………………………37
2.3.2 Effect of supporting electrolyte…………………………………………………38
2.3.3 UV/TiO2/bias Process with applying Nafion………………………………………44
3 Experimental…………………………………………………………………………………50
3.1 Materials……………………………………………………………………………………50
3.2 Apparatus and reactor design…………………………………………………………52
3.3 Procedures…………………………………………………………………………………62
3.3.1 Preparation of TiO2/Ti mesh electrode and counter electrode………………62
3.3.2 Pretreatment of Nafion membrane……………………………………………………63
3.3.3 Background experiments………………………………………………………………63
3.3.4 UV/TiO2 process…………………………………………………………………………65
3.3.5 UV/TiO2/bias process…………………………………………………………………65
3.4 Experimental conditions…………………………………………………………………66
4 Results and Discussion……………………………………………………………………70
4.1 Background experiments…………………………………………………………………70
4.1.1 Zeta potential of TiO2………………………………………………………………70
4.1.2 Photolysis………………………………………………………………………………71
4.1.3 Adsorption test…………………………………………………………………………75
4.1.4 Dyestuff stability……………………………………………………………………78
4.1.5 TiO2 deactivation test………………………………………………………………81
4.2 Degradation of dye aqueous solution in UV/TiO2 process……………………83
4.2.1 Effect of solution pH…………………………………………………………………83
4.2.2 Effect of light intensity……………………………………………………………91
4.2.3 Effect of initial concentration……………………………………………………97
4.2.4 Effect of gas introduction…………………………………………………………101
4.3 Degradation of dye aqueous solution in UV/TiO2/bias process………………107
4.3.1 Effect of solution pH………………………………………………………………107
4.3.2 Effect of light intensity…………………………………………………………114
4.3.3 Effect of initial concentration…………………………………………………121
4.3.4 Effect of gas introduction…………………………………………………………124
4.3.5 Effect of bias potential……………………………………………………………129
4.3.6 Effect of supporting electrolyte…………………………………………………141
4.4 Integrated discussion…………………………………………………………………146
5 Conclusions and Recommendations………………………………………………………154
Reference………………………………………………………………………………………157
Appendix…………………………………………………………………………………………164
157
References
Adamcikova, L., Pavlikova, K., and Sevcik, P., “ The Decay of Methylene Blue in AlkalineSolution,” React. Kinet. Catal. Lett., Vol. 69, pp. 91-94 (2000)

An, T. C., Zhu, X. H., and Xiong, Y., “ Feasibility Study of Photoelectrochemical Degradation of Methylene Blue with Three-Dimensional Electrode-Photocatalytic Reactor,” Chemosphere, Vol. 46, pp. 897-903 (2002)

An, T., Li, G., Zhu, X., Fu, J., Sheng, G., and Kun, Z.,“ Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube,” Appl. Catal. A-Gen., Vol. 279, pp. 247-256 (2005)

An, T., Zhang, W., Xiao, X., Sheng, G., Fu, J., and Zhu, X.,“ Photoelectrocatalytic Degradation of Quinoline with a Novel Three-Dimensional Electrode-Packed Bed Photocatalytic Reactor,” J. Photochem. Photobio. A :Chem., Vol. 161, pp.233-242(2004)

Byrne, J. A. and Eggins B. R., “ Photoelectrochemistry of oxalate on particulate TiO2 electrodes,” J. Electroanal. Chem., Vol.457, pp.61-72 (1998)
Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney, B. and Rouse, M.,
“ Immobilisation of TiO2 Powder for the Treatment of Polluted Water,” Appl. Catal. B: Environ., Vol. 17, pp. 25-36 (1998)

Byrne, J. A., Eggins, B. R., Byers, W., and Brown, N. M.D., “ Photoelectrochemical Cell for the Combined Photocatalytic Oxidation of Organic Pollutants and the Recovery of Metals from Waste Waters,” Appl. Catal. B: Environ., Vol.20, pp.85-89 (1999)

Camp, S. R. and Sturrock, P. E., “The Identification of the Derivatives of C.I. Reactive Blue 19 in Textile Wastewater,” Water Res., Vol. 24, pp. 1275-1278 (1990)

Carneiro, P. A., Osugi, M. E., Sene, J. J., Anderson, M. A., and Zanoni, M. V. B.,“Evaluation of Color Removal and Degradation of a Reactive Textile Azo Dye on Nanoporous TiO2 Thin-film Electrodes,” Electrochim. Acta, Vol.49, pp.3807-3820(2004)

Chakrabarti, S. and Dutta, B. K., “ Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst,” J. Hazard. Mater., Vol. B112, pp.269-278 (2004)

Duonghong, D., Ramsden, J., and Gratzel, M., “Dynamics of Interfacial Electron-Transfer Processes in Colloidal Semiconductor Systems,” J. Am. Chem. Soc., Vol. 104, pp.2977-2985 (1981)

Fernandez, A., Lassaletta, G., Jimenze, V. M., Justo, A., Gonzalze-Elipe, A. R., Herrmann, J. M., Tahiri, H., and Ait-Ichou, Y., “Preparation and Characterization of TiO2 Photocatalysts Supported on Various Rigid Supports (Glass, Quartz and Stainless Steel) Comparative Studies of Photocatalytic Activity in Water Purification,” Appl. Catal. B: Environ., Vol. 7, pp.49-63 (1995)

Fujishima, A., Hashoimoto, K., and Watanabe, T., “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999)
Fujishima, A., Rao, T. N., and Tryk, D. A., “Titanium dioxide photocatalysis ,” J. Photochem. Photobio. C: Photochemistry Reviews, Vol. 1, pp. 1-21 (2000)

Gao, R., Safrany, A., and Rabani, J., “Reactions of TiO2 Excess Electron in Nanocrystallite Aqueous Solutions Studied in Pulse and Gamma-Radiolytic Systems,” Radiat. Phys. Chem., Vol. 67, pp. 25-39 (2003)

Guo, Y., Zhao, J., Zhang, H., Yang, S., Qi, J., Wang, Z., and Xu, H., “Use of Rice Husk-Based Porous Carbon for Adsorption of Rhodamine B from Aqueous Solutions,”Dyes. Pigm., Vol. 66, pp. 123-128 (2005)

Hasnat, M. A., Siddiquey, I. A., Nuruddin, A., “Comparative Photocatalytic Studies of Degradation of A Cationic and An Anionic Dye,” Dyes. Pigm., Vol.66, pp.185-188 (2005)

Hidaka, H., Ajisaka, K., Horikoshi, S., Oyama, T., Takeuchi, K., Zhao, J., and Serpone, N.,“Comparative Assessment of the Efficiency of TiO2/OTE Thin Film Electrodes Fabricated by Three Deposition Methods Photoelectrochemical Degradation of the DBS Anionic Surfactant,” J. Photochem. Photobio. A :Chem., Vol. 138, pp. 185-192(2001)

Holger, T.G., “Introduction to Semiconductor Physics,” Paul-Drude-Institut für Festkörperelektronik, Berlin (1999)

Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J. M.,“ Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B:Environ., Vol. 31, pp. 145-157 (2001)

Hsu, W. Y. and Gierke, T. D., “ Ion Transport and Clustering in Nafion Perfluorinated Membranes,” J. Membr. Sci., Vol. 13, pp. 307-326 (1983)

Jiang, D., Zhao, H., Jia, Z., Cao, J., and John, R., “ Photoelectrochemical Behaviour of Methanol Oxidation at Nanoporous TiO2 Film Electrodes,” J. Photochem. Photobio. A :Chem., Vol. 144, pp. 197-204 (2001)

Jiang, D., Zhao, H., Zhang, S., John, R., and Will, G. D., “Photoelectrochemical Measurement of Phthalic Acid Adsorptionon Porous TiO2 Film Electrodes,” J. Photochem. Photobio. A :Chem., Vol. 156, pp.201-206 (2003)

John, S. A. and Ramaraj, R., “Microenvironment Effects on the Electrochemical and Photoelectrochemical Properties of Thionine Loaded Nafion Films,” J. Electroanal. Chem., Vol. 561, pp. 119-126 (2004)

Jorge, S. M. A., Sene, J. J., Florentino, A.O., “ Photoelectrocatalytic Treatment of p-nitrophenol Using Ti/TiO2 Thin-Film Electrode,” J. Photochem. Photobio. A:Chem., Vol. 174, pp.71-75 (2005)

Kesselman, J. M., Lewis, N. S. and Hoffmann, M. R., “ Photoelectrochemical Degradation of 4-Chlorocatechol at TiO2 Electrodes : Comparison between Sorption and Photoreactivity,’’ Environ. Sci. Technol. Vol.31, pp.2298-2302 (1997)

Kormann, C., Bahnemann, D. W., and Hoffmann, M. R., “Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO2 Suspensions,” Environ. Sci. Technol., Vol. 25, pp. 494- 500 (1991)

Kumazawa, H., Inoue, M., and Kasuya, T., “Photocatalytic Degradation of Volatile and Nonvolatile Organic Compounds on Titanium Dioxide Particles Using Fluidized Beds,” Ind. Eng. Chem. Res., Vol. 42, pp. 3237-3244 (2003)

Lakshmi, S., Renganathan, R., and Fujita, S., “Study on TiO2-Mediate Photocatalytic Degradation of Methylene Blue,” J. Photochem. Photobio. A :Chem., Vol. 88, pp. 163-167 (1995)

Lee, J. and Choi, W., “Photocatalytic Degradation of N Nitrosodimethylamine:Mechanism, Product Distribution, and TiO2 Surface Modification,” Environ. Sci. Technol., Vol. 39, pp. 6800-6807 (2005)

Lee, M. S., Cheon, I. C., and Kim, Y. I., “Photoelectrochemical Studies of Nanocrystalline TiO2 Film Electrodes,” Bull. Korean Chem. Soc., Vol. 24, pp. 1155-1162 (2003)

Leng, W., Liu, H., Cheng, S., Zhang, J., and Cao, C., “Kinetics of Photocatalytic Degradation of Aniline in Water over TiO2 Supported on Porous Nickel”, J. Photochem. Photobio. A :Chem., Vol. 131, pp.125-132 (2000)

Leng, W. H., Zhu, W. C., Ni, J., Zhang, Z., Zhang, J. Q., Cao, C. N., “Photoelectrocatalytic Destruction of Organics Using TiO2 as Photoanode with Simultaneous Production of H2O2 at the Cathode,” Appl. Catal. A-Gen., Vol. 300, pp. 24-35 (2006)

Li, X. Z., Liu, H. L., Yue, P. T., and Sun, Y. P., “Photoeletrocatalytic Oxidation of Rose Bengal in Aqueous Solution Using a Ti/ TiO2 Mesh Electrode,” Environ. Sci. Technol., Vol. 34, pp. 4401-4406 (2000)

Li, X.Z., Li, F.B., Fan, C.M., and Sun, Y.P., “Photoelectrocatalytic Degradation of Humic Acid in Aqueous Solution Using a Ti/TiO2 Mesh Photoelectrode,” Water Res., Vol. 36, pp. 2215-2224 (2002)

Ling, C. M., Mohamed, A. R., and Bhatia, S., “Performance of Photocatalytic Reactors Using Immobilized TiO2 Film for the Degradation of Phenol and Methylene Blue Dye Present in Water Stream,” Chemosphere, Vol. 57, pp. 547-554 (2004)

Luo, J., and Hepel, M., “ Photoelectrochemical Degradation of Naphthol Blue Black Diazo Dye on WO3 Film Electrode,” Electrochim. Acta, Vol.46, pp.2913-2922 (2001)

Marc, P. T., Veronica, G. M., Miguel, A. B., Jaime, G., and Santiago, E., “Degradation of chlorophenols by means of advanced oxidation processes: a general review, ” Appl. Catal. B: Environ., Vol. 47, pp. 219-256 (2004)

Mandelbaum, P., Bilmes, S. A., and Regazzoni, A. E., “ The Influence of Applied Bias Potential on the Photooxidation of Methanol and Salicylate on Titanium Dioxide Flims,” Sol. Energy, Vol. 65, pp. 75-80 (1999)

Mauritz, K. A. and Moore, R. B., “State of Understanding of Nafion,” Chem. Rev., Vol. 104, pp. 4535-4585 (2004)

Mills, A., and Wang, J., “Photobleaching of Methylene Blue Sensitised by TiO2: an Ambiguous System? , ” J. Photochem. Photobio. A :Chem., Vol.127, pp.123-134 (1999)

Moser, J., Punchihewa, S., Infelta, P. P., Gratzel, M., “Surface Complexation of Colloidal Semiconductors Strongly Enhances Interfacial Electron-Transfer Rates,” Langmuir, Vol. 7, pp. 3012-3018 (1991)

Okada, T., M.-H., S., Gorseth, O., and Kjelstrup, S., “ Transport and Equilibrium Properties of Nafion Membranes with H+ and Na+ ions,” J. Electroanal. Chem., Vol. 442, pp. 137-145 (1998)

Ollis, D. F., Pelizzetti, E., and Serpone, N., “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol., Vol. 25, pp.1523-1529 (1991)

Osugi, M. E., Umbuzeiro, G. A., Anderson, M. A., and Zanoni, M. V. B., “Degradation of Metallophtalocyanine Dye by Combined Processes of Electrochemistry and Photoelectrochemistry,” Electrochim. Acta, Vol. 50, pp. 5261-5269 (2005)

Radecka, M., Wierzbicka, M., Komornicki, S., and Rekas, M., “Influence of Cr on Photoelectrochemical Properties of TiO2 Thin Films,” Physica B, Vol. 348, pp. 160-168 (2004)

Park, H. and Choi, W., “Photocatalytic Reactivities of Nafion-Coated TiO2 for the Degradation of Charged Organic Compounds under UV or Visible Light,” J. Phys. Chem. B, Vol. 109, pp. 11667-11674 (2005)

Pelegrini, R., Patricio, P. Z., Andrade, A. R., Reyes, J., and Duran, N., “Electrochemically Assisted Photocatalytic Degradation of Reactive Dyes,” Appl. Catal. B: Environ., Vol. 22, pp. 83-99 (1999)

Rodrıiguez, R., Blesa, M. A., Regazzoni, A. E., “Surface Complexation at the TiO2 (Anatase) Aqueous Solution Interface Chemisorption of Catechol,” J. Colloid Interface Sci., Vol. 177, pp. 122 (1996)

Prairie, M. R., Evans, L. R., Stange, B. M., and Martinez, S. L., “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol., Vol. 27, pp. 1776-1782 (1993)

Schramm, K. W., Hirsch, M., Twele, R., and Hutzinger, O., “A New Method for
Extraction of C.I. Reactive Red 4 and Its Derivatives from Water,” Water Res., Vol. 22, pp. 1043-1045 (1988)

Selcuk, H., Sene, J. J., and Anderson, M. A., “Photoelectrocatalytic Humic Acid Degradation Kinetics and Effect of pH, Applied Potential and Inorganic Ions,” J. Chem. Technol. Biotechnol., Vol. 78, pp. 979-984 (2003)

Selcuk, H. and Anderson, M. A., “ Effect of pH, Charge Separation and Oxygen
Concentration in Photoelectrocatalytic System: Active Chlorine Production and Chlorate Formation,” Desalination, Vol. 176, pp. 219-227 (2005)

Senthilkumaar, S., Porkodi, K., Gomathi, R., Maheswari, A. G., and Manonmani, N., “Sol-Gel Derived Silver Doped Nanocrystalline Titania Catalysed Photodegradation of Methylene Blue from Aqueous Solution,” Dyes. Pigm., Vol. 69, pp. 22-32 (2006)

Serpon, N. and Emeline, A. V., “Suggested terms and definitions in photocatalysis and radiocatalysis,” Int. J. Photoenergy, Vol. 4, pp. 91-131 (2002)

Sivalingam, G., Nagaveni, K., Hegde, M.S., and Madras, G., “ Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2,” Appl. Catal. B: Environ., Vol. 45, pp. 23-38 (2003)

Sun, C. C. and Chou, T. C., “ Electrochemically Promoted Photocatalytic Oxidation of Nitrite Ion by Using Rutile Form of TiO2/Ti Electrode,” J. Mol. Catal. A-Chem., Vol. 151, pp. 133-145 (2000)

Unnikrishnan, E. K., Kumar, S. D., and Maiti, B., “Permeation of Inorganic Anions through Nation Ionomer Membrane,” J. Membrane Sci., Vol. 137, pp. 133 137 (1997)

Villacres, R., Ikeda, S., Torimoto, T., Ohtani, B., “Development of a Novel Photocatalytic Reaction System for Oxidative Decomposition of Volatile Organic Compounds in Water with Enhanced Aeration,” J. Photochem. Photobio. A :Chem., Vol. 160, pp. 121-126 (2003)

Yang, S., Liu, Y., and Sun, C., “ Preparation of Anatase TiO2/Ti Nanotube-Like Electrodes and Their High Photoelectrocatalytic Activity for the Degradation of PCP in Aqueous Solution,” Appl. Catal. A-Gen., Vol. 301, pp. 284-291 (2006)

Yu, Y., Xi, D., and Gao, C., “China’s textiles pollution burden ,” Water21, IWA publishing, UK (2006)

Zainal, Z., Lee, C. Y., Hussein, M. Z., Kassim, A., and Yusof, N. A., ”Effect of Supporting Electrolytes in Electrochemically-assisted Photodegradation of an Azo Dye,” J. Photochem. Photobio. A :Chem., Vol.172, pp.316-321 (2005)

Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J., and Serpone, N.,
“ Photooxidative N-demethylation of Methylene Blue in Aqueous TiO2 Dispersions
under UV Irradiation,” J. Photochem. Photobio. A :Chem., Vol. 140, pp. 163-172 (2001)

王國華,“以紫外線/二氧化鈦程序處理氣相中三氯乙烯之研究”,國立中興大學環境
工程學研究所碩士論文 (1996)

李玉鈞,“外加電位及披覆鉑對UV/TiO2 程序處理含2-氯酚水溶液之影響”, 國立台
灣科技大學化學工程學研究所碩士論文 (2001)

林彥志,“TiO2 光觸媒電極分解亞甲基藍之變因探討及動力學研究”,國立台灣大學化
學工程學研究所碩士論文 (2000)

黃東斌,“以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究”,國立台灣科技大
學化學工程學研究所碩士論文 (2005)

曾焜煜,“以紫外線/光觸媒程序處理氣相丙酮反應行為之研究”,國立台灣科技大學
化學工程學研究所碩士論文 (2004)

蔡環鴻,“以二氧化鈦光觸媒進行氣相中三氯乙烯之光催化反應研究”,國立中興大學
環境工程學研究所碩士論文 (1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊儒賓,〈變化氣質、養氣與觀聖賢氣象〉,《漢學研究》第19卷第1期,2001年6月。
2. 陳政揚,〈論莊子與張載的「氣」概念〉,《東吳哲學學報》第12期,2005年8月。
3. 陳立驤,〈張載天道論性格之衡定〉﹐《鵝湖月刊》第26卷第11期,2001年5月。
4. 袁光儀,〈張載橫渠論性要旨初探〉,《孔孟月刊》第31卷第12期。
5. 顏淑君,〈論張載之禮學思想〉,《孔孟學報》第72期,1996年9月。
6. 蔣秋華,〈論張載的氣〉,《孔孟月刊》第21卷第3期,1982年11月。
7. 黃麗香,〈張載之禮學〉,《孔孟月刊》第25卷第7期,1987年3月。
8. 黃錦鋐,〈張載的政治思想及其影響〉,《幼獅學誌》第15卷第3期,1979年6月。
9. 黃漢忠,〈評陳來《宋明理學》對張橫渠思想的詮釋〉,《鵝湖學誌》第16期,1996年6月。
10. 黃敏浩,〈張載太和篇「太虛」與「氣」之關係的兩種詮釋述評〉,《孔孟月刊》第22卷第3期。
11. 曾志偉,〈張載氣化論下鬼神存在的證立—論「二氣之良能」的辨證歷程〉﹐《東華中國文學研究》,2003年6月。
12. 彭雅玲,〈張載變化氣質說管窺〉,《孔孟月刊》第27卷第7期,1989年3月。
13. 夏健文,〈張載變化氣質說之探討〉,《光武學報》,1998年11月。
14. 劉貴傑,〈宋儒張載的人格教育〉,《國教世紀》第194期,2001年2月。
15. 劉原池,〈張載「心能盡性」說對胡宏「盡心成性」說的影響〉,《哲學與文化》第30卷第5期,2003年5月。