跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂佳蘋
研究生(外文):Chia-ping Lu
論文名稱:以混凝程序處理隧道工程廢水之研究
論文名稱(外文):Treatment of Tunnel Construction Wastewater by Coagulation-Flocculation Process
指導教授:劉志成劉志成引用關係
指導教授(外文):Jhy-Chern Liu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:140
中文關鍵詞: 水玻璃灌漿 皂土水泥灌漿 矽酸鹽樹脂灌漿溶解矽酸 濁度 化學混凝隧道工程廢水
外文關鍵詞:precipitationreusesoluble silicatetunnel construction wastewatercoagulation
相關次數:
  • 被引用被引用:7
  • 點閱點閱:502
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:2
本研究之主要目的在探討隧道工程廢水之水質特性,以及評估利用化學混凝程序處理隧道工程廢水之效能。首先以雪山隧道實地採樣作水質檢驗分析及瓶杯試驗;接著以模擬方式分析灌漿作業廢水之特性;最後針對難處理之模擬灌漿廢水,以氯化鈣(CaCl2)、氯化鎂(MgCl2)以及多元氯化鋁(PAC)作為混凝劑,透過殘餘濁度、溶解矽酸濃度以及沉降污泥比等量測,評估其處理效能,並藉由沉澱物之分析,討論其處理機制。
實地採樣分析發現,隧道內之地下滲漏水水質非常乾淨;採樣期間所進行之工程為下半斷面開挖、襯砌以及管線廊道等工程,產生之廢水水質偏鹼,懸浮固體濃度高且含有少許油脂,水質及水量隨施工作業不同而變化大,以多元氯化鋁(PAC)作為混凝劑時,可得到良好的處理效果與現階段雪山隧道工程廢水處理廠之現狀吻合。
模擬灌漿廢水實驗中發現,以L.W(水玻璃)作為灌漿材時,使用高水玻璃配方會因高濃度矽酸殘留於水中,產生穩定、白濁難處理之廢水,且酸鹼控制不易;而利用B/C(皂土/水泥)灌漿以及矽酸鹽樹脂作為灌漿材時,所產生之廢水污染小、易處理。
針對含矽酸之灌漿廢水,實驗結果顯示以氯化鈣處理,最適操作pH值為12,推測對矽酸之移除機制,以鈣矽沉澱以及氫氧化鈣吸附為主;以氯化鎂處理,當pH = 7~9時適於濁度之移除,對於溶解矽酸之移除則以pH = 9~12為佳,推測鎂鹽移除矽酸之機制,在高pH下,主要為矽酸與氫氧化鎂共沉澱;以多元氯化鋁處理,在pH = 7~8時,有較佳的濁度移除效能, pH値在9~10之間,適於溶解矽酸移除,移除機制主要以產生矽酸鋁沉澱為主。
Tunnel construction wastewater was characterized and the treatment by coagulation process was studied using wastewater from Syue Mountain tunnel construction project and synthetic wastewater from laboratory. Jar tests were carried out to assess optimum conditions for removal of turbidity and soluble silicate.
The results from the wastewater analysis show that the seepage water samples in the tunnel were all very clean. The main pollutions in the tunnel construction wastewater were suspended solid and traces of oil and grease. The abundant suspended solid(561.67 mg/L)caused the high water turbidity(612.5 NTU). The other pollutions, such as COD, BOD, NH3-H, etc. were all negligible. Jar testes showed that PAC was effective in the wastewater treatment.
The synthetic wastewater experiment showed that injection slurry using certain L.W recipe generated white, stable and muddy wastewater and it was difficult to treat. The wastewater is high both in soluble silicate concentration(about 1,500~2,500 mg/L as SiO2)and in the alkalinity. On the other hand, the B/C(bentonite/cement) injection slurry and silicate resin generated wastewater that were relatively easy to handle.
The results from the jar tests indicated that CaCl2 was effective coagulant for silica removal and the optimum pH was 12. Major mechanisms for silica removal may be attributed to calcium silicate precipitant(C-S-H) and the adsorption on the calcium hydroxide precipitant. Magnesium chloride was also effective coagulant for silica removal at pH higher than 10. The mechanisms for silica removal involved co-precipitation and adsorption, depending on pH and dose. The PAC showed higher removal efficiency for silica removal and the optimum pH was between 9~10.
摘要 …………….………………………………………………I
Abstract …………….…………………………………………II
致謝 ……………….……………………………………………III
目錄 …………….………………………………………………IV
圖目錄 ……………….…………………………………………VII
表目錄 …………….……………………………………………XI
第一章 緒 論 ……………………………………………………1
第二章 理論基礎與文獻回顧……………………………………2
2.1 隧道工程廢水概論 …………………………………………2
2.1.1 隧道工程廢水來源 ………………………………………2
2.1.2 隧道工程廢水特性 ………………………………………3
2.1.3 隧道工程廢水處理方法概論 ……………………………5
2.2 水泥水解化學 ………………………………………………6
2.2.1 卜特蘭水泥之成分 ………………………………………6
2.2.2 卜特蘭水泥之水化特性 …………………………………7
2.3 溶解性二氧化矽之化學特性及處理方法概論 ……………9
2.3.1 二氧化矽之基本性質 ……………………………………9
2.3.2 水中二氧化矽的分類 ……………………………………12
2.3.3 二氧化矽之聚合反應 ……………………………………12
2.3.4 含矽廢水處理方法概論 …………………………………14
2.3.5 水中溶解性二氧化矽之移除機制 ………………………17
2.4 化學混凝沉澱原理 …………………………………………19
2.4.1混凝劑作用 ………………………………………………19
2.4.2混凝劑的特性 ……………………………………………19
2.4.3高分子絮凝劑 ……………………………………………20
2.4.4絮凝機制 …………………………………………………21
第三章 實驗設備與方法 ………………………………………23
3.1實驗架構 ……………………………………………………23
3.2實驗水樣 ……………………………………………………24
3.2.1雪山隧道工程之原水水樣 ………………………………24
3.2.2模擬隧道工程廢水之水樣 ………………………………28
3.3實驗藥品 ……………………………………………………31
3.3.1水質檢測之藥品 …………………………………………31
3.3.2實驗用之酸鹼溶液 ………………………………………33
3.3.3瓶杯實驗之藥品 …………………………………………34
3.4實驗設備與裝置 ……………………………………………35
3.5實驗方法與流程 ……………………………………………37
3.5.1瓶杯試驗 …………………………………………………37
3.5.2水質檢測分析 ……………………………………………39
3.5.3其他試驗分析 ……………………………………………46
3.5.4沉降曲線實驗 ……………………………………………49
3.5.5酸鹼滴定曲線實驗 ………………………………………49
第四章 實驗結果與討論 ………………………………………50
4.1雪山隧道工程廢水 …………………………………………50
4.1.1雪山隧道工程廢水水質分析 ……………………………50
4.1.2雪山隧道工程廢水瓶杯實驗 ……………………………59
4.2模擬灌漿廢水特性分析 ……………………………………64
4.2.1皂土/水泥(B/C)灌漿廢水實驗 ………………………64
4.2.2矽酸鹽樹酯灌漿廢水實驗 ………………………………67
4.2.3 L.W(水玻璃)灌漿廢水實驗 …………………………67
4.3模擬灌漿廢瓶杯實驗 ………………………………………83
4.3.1 CaCl2加藥量及酸鹼值改變對廢水處理之影響 ………84
4.3.2 PAC加藥量及酸鹼值改變對廢水處理之影響 …………94
4.3.3 MgCl2加藥量及酸鹼值改變對廢水處理之影響 ………104
4.3.4 低矽酸污染廢水混凝沉澱實驗 …………………………114
4.4隧道工程廢水處理以及回收再利用之可行性 ……………123
第五章 結論與建議 ……………………………………………126
參考文獻 …………………………………………………………129
附錄A 模擬廢水材料規格表 …………………………………136
附錄B 鹽類混凝劑水解物種分布圖 …………………………138
附錄C 矽酸鹽物種之元素比例圖 ……………………………139
作者簡介 …………………………………………………………140
甘其銓等,「二氧化矽於苦鹹水薄膜處理程序中結垢機制與膜前去除技術初探」,自來水會刊,第二十五卷,第一期,第 109-119 頁,(2005)。

交通部台灣區國道興建工程局,「雪山隧道工程與地質處理相關之污水處理技術研究」,研究報告,台北(2005)。

呂嘉敏,「混凝程序去除高科技產業中非晶型二氧化矽之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2003)。

林耀煌,「高層建築基礎開挖施工法與設計實例」,長松出版社,684-687 頁,台北,(1992)

林欣慧,「以UF配合鎂鹽前處理移除CMP廢水中溶解矽酸之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2004)。

莊順興等,「溶解性二氧化矽混凝特性之探討」,自來水會刊,第二十三卷,第四期,第 72-80 頁,(2004)。

郭容忍,「焚化灰渣作為水泥生料對卜特蘭水泥影響之研究」,碩士論文,國立交通大學環境工程研究所,新竹(2004)。

曾迪華等,「隧道工程廢(污)水處理之研究」,研究報告,國立中央大學環境工程研究所,桃園(2000)。

Al-Rehaili A. M., “Comparative chemical clarification for silica removal from RO groundwater feed,”Desalination, 159, 21-31 (2003).

Ali, M. B. S., Hamrouni, B., Bouguecha, S., Dhahbi, M.,“Silica removal using ion-exchange resins,”Desalination, 167, 273-279 (2004).

Batchelor, B. and Mcdevitt, M., “An innovative processes for treating recycled cooling water,”Journal Water Pollution Control Federation, 56(10), 1110-1117 (1984).

Batchelor, B. and Mcdevitt, M.,“Technical and economic feasibility of ultra-high lime treatment of recycled cooling water,”Journal Water Pollution Control Federation, 63(7), 982-990 (1991).

Bremere, I., Kennedy, M., Mhyio, S., Jaljuli, A., Witkamp, G. J. and Schippers, J, “Prevention of silica in membrane systems: removal of monomer and polymer silica,” Desalination, 132, 89-100 (2000).

Chuang, S. H., Chang, T. C., Ouyang, C. F. and Leu, J. M., “Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park,” (2003).

Damidot, D., Nonat, A. and Barret, P., “Kinetics of tricalcium silicate hydration in diluted suspensions by microcalorimetric measurements,” Jour. Amer. Ceram. Soc., 73(11), 3319-22 (1990).

Gabelich, J. C., Chen, W. R., Yun, T. I., Coffey, B. M. and Suffet, I. H., “The role of dissolved aluminum in silica chemistry for membrane processes,” Desalination, 180, 307-319 (2005).

Gallup, D. L., Sugiaman, F., Capuno, V., Manceau, A.,“Laboratory investigation of silica removal from geothermal brines to control silica scaling and produce usable silicates,” Applied Geochemistry, 18, 1597-1612 (2003).

Gallup, D. L., “Aluminum silicate scale formation and inhibition (2): scale solubilities and laboratory and field inhibition tests,”Geothermic, 27(4), 485-501 (1998).

Gregory, J. and Duan, J., “Influence of soluble silica on coagulation by aluminum sulphate,”Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 309-319 (1996).

Gregory, J. and Duan, J.,“The effect of dissolved silica on the action of hydrolyzing metal coagulants,” Water Science and Technology, 38(6), 113-120 (1998a).

Gregory, J., “The density of particale aggregates,” Water Science and Technology, 36(4), 1-13 (1997).

Gregory, J. and Duan, J.,“The influence of silicic acid on aluminum hydroxide precipitation and flocculation by aluminum salts,”Journal of Inorganic Biochemistry, 69, 193-201 (1998b).

Gregory, J. and Dupont, V.,“Properties of flocs produced by water treatment coagulations,” IWA Proc. Sludge Management Conference, Taipei, Taiwan, pp. 381-386 (2001).

Gregory, J. and Duan, J., “Hydrolyzing metal salts as coagulants,” Pure and Applied Chemical, 73(12), 2017-2026 (2001).

Iler, R. K., The Chemistry of Silica, 1st Ed., A Wiley-Interscience Publication, New York, pp. 40-399 (1979).

Lee, S. Y. and J. Gregory,“The effect of charge density and molecular mass of cationic polymers of flocculation kinetics in aqueous solution,” Water Supply, 19(1), 11-17 (1991).

Mackenzie L. D. and David A. C., Introduction to Environmental Engineering, 1st Ed., McGraw-Hill Companies, New York, pp. 174-180 (1998).

Metcalf and Eddy, Wastewater Engineering-Treatment and Reuse, 4th Ed., McGraw-Hill Book, New York, pp. 475-499 (2004).

Masaraw, A., D. Meyerstein, N. Daltrophe and O. Kedem, “Compact accelerated precipitation softening (CAPS) as pretreatment for membrane desalination II - lime softening with concomitant removal of silica and heavy metals,” Desalination, 113, 73-84 (1997).

Nägele, E, “The zeta-potential of cement,”Cement and Concrete Research, 15, 453-462 (1985).

Nägele, E, “The zeta-potential of cement Part II: Effect of pH-value,”Cement and Concrete Research, 16, 853-863 (1986).

Nägele, E, “The zeta-potential of cement Part IV : Effect of simple salts.”Cement and Concrete Research, 17, 977-982 (1987).

Ng, K. Y., Low, G. L., Heng, R., Tam, C. T., Ng, W. L., “Wastewater recycling in concrete batching plants,”Proceeding of 1st IWA-ASPIRE Conference, Singapore, pp. 10-15 July (2005).

Nachbaur, L., Nkinamubanzi, P. C., Nonat, A., Mutin, J. C., “Electrokinetic properties which control the coagulation of silicate cement suspensions during early age hydration,”Journal of Colloid and Interface Science, 202(2), 261-268 (1998).

Ning, R. Y., “Discussion of silica speciation, fouling, control and maximum reduction,”Desalination, 151, 67-73 (2002).

Nurdogan, Y., Goldman, E. and Dawes, S. S., “Optimizing chemical treatment of a power plant water softener,”Water Science and Technology, 38(4-5), 347-354 (1998).

Peters, J. C.,“Wastewater treatment during construction on bureau of reclamation projects,”American Society of Mechanical Engineers, Applied Mechanics Division, 106-144 (1977).

Rossini, M., Garcia Garrido, J. and Galluzzo, M., “Optimization of the coagulation-flocculation treatment: influence of rapid mixing parameters,”Water Research, 33(8), 1817-1826 (1998).

Rout, D., Verma, R. and Agarwal, S. K., “Polyelectrolyte treatment - an approach for water quality improvement,”Water Science and Technology, 40(2), 137-141 (1999).

Sheikholeslami, R., Al-Mutaz, I. S., Tan, S. and Tan, S. D., “Some aspect of silica polymerization and fouling and its pretreatment by sodium aluminate, lime and soda ash,”Desalination, 150, 85-92 (2002a).

Sheikholeslami, R. and Bright, J., “Silica and metals removal by pretreatment to prevent fouling of reverse osmosis membranes,”Desalination, 143, 255-267 (2002b).

Sugita, H., Kato, K., Ueda, A., Matsunaga, I., Sakurai, Y., Yasuda, K., Bando, Y. and Nakamura, M.,“Field teats on silica removal from geothermal brines in Sumikawa and Onuma geothermal areas,”Journal of Chemical Engineering of Japan, 32(5), 696-700 (1999).

Schlomach, J. and Kind, M.,“Investigations on the semi-batch precipitation of silica,”Journal of Colloid and Interface Science, 277(2), 316-326 (2004).

Sahachaiyunta, P., Koo, T. and Sheikholeslami, R.,“Effect of several inorganic species on silica fouling in RO membrane,”Desalination, 144, 373-378 (2002).

Sheikholeslami, R. and Tan, S., “Effect of water quality on silica fouling of desalination plants,”Desalination, 126, 267-280 (1999).

Sugita, H., Suzuki, R., Bando, Y. and Nakamura, M., “Effect of aluminum ion on silica removal from geothermal brine by seeding method using silica gel,”Journal of Chemical Engineering of Japan, 31(3), 462-464 (1998).

Sheppard, T. P., Water Conditioning for Industry, 1st Ed., McGraw-Hill Companies., New York, pp. 84-125 (1954).

Sheppard, T. P., Water Conditioning for Industry, 1st Ed., McGraw-Hill Companies., New York, pp. 126-145 (1954).

Tambo, N. and Kamei, T., “Coagulation and flocculation on water quality matrix,”Water Science and Technology, 37(10), 31-41 (1998).

Ueda, A., Kato, K., Mogi, K., Mroczek, E. and Thain, I. A., “Silica removal from Mokai, New Zealand, geothermal brine by treatment with lime and a
cationic precipitant,”Geothermic, 32, 47-61 (2003).

Van Benschoten, J.E. and Edzwald, J.K.,“Chemical aspects of coagulation using aluminum salt-I. Hydrolytic reactions of alum and polyaluminum chloride,”Water Research, 24(12), 1519-1526 (1990a).

Van Benschoten, J.E. and Edzwald, J.K., “Chemical aspects of coagulation using aluminum salt-II. Hydrolytic reactions of alum and polyaluminum chloride,”Water Research, 24(12), 1527-1535 (1990b).

Wang, D., Sun, W., Xu, Y., Tang, H. and Gregory, J., “Speciation stability of inorganic polymer flocculant─PACl,”Colloids Surfaces A: Physicochemical and Engineering Aspects, 243(1-3), 1-10 (2004).

Yokoyama, T., Ueda, A., Kato, K., Mogi, K. and Matsuo, S., “A study of the alumina–silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid,”Journal of Colloid and Interface Science, 252, 1-5 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊