跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王國榮
研究生(外文):Guo-Rung Wang
論文名稱:PtRu/C雙元合金觸媒奈米結構與其對甲醇氧化活性關係之研究
論文名稱(外文):Investigation of Nanostructure-activity Relationship of Bimetallic PtRu/C Catalysts for Methanol Oxidation
指導教授:黃炳照黃炳照引用關係
指導教授(外文):Bing-Joe Hwang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:137
中文關鍵詞:直接甲醇燃料電池陽極觸媒X 光吸收光譜CO 剝除甲醇氧化
外文關鍵詞:direct methanol fuel cells (DMFCs)anode catalystsX-ray absorption spectroscopy (XAS)CO strippingmethanol oxidation.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
本研究以商用雙元合金觸媒JM 30於氧氣及氫氣環境下升溫熱循環(Thermal Cycling)處理,改變其奈米結構。並以同步輻射X光吸收光譜及程序升溫表面反應分析熱循環後觸媒的結構改變,以期能瞭解其結構對甲醇催化氧化反應的影響。
由X光吸收光譜的測量結果,配合本實驗室所發展之原子結構參數技術,可知JM 30觸媒於氧氣環熱循環後,其整體之Pt及Ru合金程度隨著熱處理次數而上升;在氫氣環境下則表現逐漸下降的趨勢。研究中也藉由電化學循環伏安、CO剝除及甲醇氧化方法,測量材料的電化學活性。從硫酸中的循環伏安和程序升溫表面反應的結果,可推論氧氣環境下熱處理將使觸媒表面Ru原子成份增加;氫氣環境下則使表面Pt原子成份增加。在催化性能表現上,於氫氣環境熱循環一次之後的觸媒,在CO剝除及甲醇氧化的實驗,其電化學活性皆高於未熱處理的JM 30觸媒。
本研究嘗試從觸媒奈米結構的變化,與其電化學性能表現建立關聯性,並藉由不同的熱處理方法,改變原子叢集排列,以提供對於甲醇氧化之最佳化觸媒結構的方法。
In this work, the nanostructure of commercial JohnsonMatthey Pt-Ru/C (JM 30) catalysts were modified by performing “Thermal Cycling” experiment under oxygen and hydrogen atmosphere. By employing the X-ray Absorption Spectroscopy (XAS) technique and Temperature Programmed Surface Reaction (TPSR), the structural changes of the catalysts during the thermal cycling were elucidated and their electrocatalytic efficiencies towards methanol oxidation were further discussed.
From the XAS analysis, the alloying extent of JM 30 catalysts are increased after several O2-thermal cycles, in contrast, alloying extent are decreased after H2-thermal cycling. The electrochemical activities and CO-stripping abilities of the thermal cycled catalysts were also evaluated. From the results of cyclic voltammetry in sulfuric acid and TPSR, it was demonstrated that oxygen and hydrogen adsorption can change the surface composition of the catalysts. Ru was brought to the surface from the bulk by adsorbed oxygen whereas Pt moved to the surface from the bulk by the adsorbed hydrogen. Among the O2 and H2 treated catalysts, it was found that the catalyst after one time heat treatment by hydrogen exhibited higher CO stripping and methanol oxidation ability than the as received one.
From the results of the above studies, the relationship between nanosturcture and electrocatalytic performance towards methanol oxidation was established. Understanding these results provides a methodology to control the atomic distribution and enhance the electrochemical activity.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XV
第一章 緒論 1
1.1前言 1
1.2直接甲醇燃料電池(DMFC) 5
1.2.1 DMFC陽極觸媒 10
1.2.1.1陽極觸媒材料 11
1.2.1.2觸媒奈米結構鑑定 13
1.2.1.3甲醇於觸媒電極氧化反應之機制 17
1.2.2 DMFC電解質 19
1.2.3 DMFC陰極材料 20
1.3研究動機與方法 21
第二章 原理 23
2.1 X光吸收光譜原理 23
2.1.1 EXAFS 23
2.1.2 XANES 26
2.1.3數據分析 27
2.2 XRD分析原理 30
2.3電化學原理 31
2.3.1循環伏安法 31
2.3.2極化曲線 34
2.4程序升溫表面反應(TPSR)原理 35
2.5質譜儀(Mass Spectrometer)原理 37
第三章 實驗設備與方法 39
3.1實驗藥品及設備 39
3.1.1實驗藥品 39
3.1.2儀器設備 39
3.2實驗方法 40
3.2.1商用陽極觸媒於氧氣環境下之熱循環(O2 thermal cycling) 40
3.2.2商用陽極觸媒於氫氣環境下之熱循環(H2 thermal cycling) 41
3.2.3材料鑑定與分析 42
3.2.3.1 XRD分析 42
3.2.3.2 TEM 分析 43
3.2.3.3電化學特性測試 43
3.2.3.3.1電極片製備 44
3.2.3.3.2電化學特性量測 44
3.2.3.3.2.1循環伏安 45
3.2.3.3.2.2 CO剝除 45
3.2.3.3.2.3甲醇氧化極化曲線 45
3.2.3.4 X光吸收光譜 45
3.2.3.4.1 EXAFS之曲線適配 45
3.2.3.4.2以X光吸收光譜分析觸媒結構 46
3.2.3.5程序升溫表面反應(TPSR) 49
第四章 結果 50
4.1金屬觸媒材料結構分析 50
4.1.1 XRD與TEM分析 50
4.1.2 X光吸收光譜分析(XAS) 56
4.1.2.1 X光吸收近邊緣結構(XANES) 56
4.1.2.2延伸X光吸收微細結構(EXAFS) 61
4.1.3程序升溫表面反應(TPSR) 75
4.2電化學特性量測結果 79
4.2.1循環伏安 79
4.2.2 CO剝除 83
4.2.3甲醇氧化極化曲線 84
第五章 討論 89
5.1陽極觸媒材料之探討 89
5.1.1陽極觸媒材料之XRD及TEM比較 89
5.1.2陽極觸媒材料之結構比較 89
5.1.3陽極電極觸媒材料之電化學活性比較 94
5.1.4陽極電極觸媒材料之結構與電化學活性之間的關係 97
第六章 結論 100
附錄 101
參考文獻 130
1. Carrette, L.; Friedrich, K. A.; Stimming, U., “Fuel Cells - Fundamentals and Applications”, Fuel Cells, 2001, 1, 5.
2. Lamy, C.; Lima, A.; Le Rhun, V.; Coutanccau, C.; Leger, J. M., “Recent advances in the development of direct alcohol fuel cells (DAFC)”, J. Power Sources, 2002, 105, 283.
3. Hogarth, M. P.; Ralph, T. R., “Catalysis for Low Temperature Fuel Cells”, Platinum Met. Rev. 2002, 46, 146.
4. Winter, M.; Brodd, R. J., “What Are Batteries, Fuel Cells, and Supercapacitors ?”, Chem. Rev., 2004, 104, 4245.
5. Sundmacher, K.; Schultz, K.; Zhou, S.; Scott, K.; Ginkel, M.; Gilles, E. D., “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis”, Chem. Eng. Sci., 2001, 56, 333.
6. Brosha, E.; Davey, J.; Garzon, F.; Hamon, C.; Kim, Y. S.; Neergat, M. ; Piela, P.; Pivovar, B.; Purdy, G.; Ramsey, J.; Rowley, J.; Wilson, M. and Zelenay, P., “Direct Methanol Fuel Cells”, Hydrogen, Fuel Cells & Infrastructure Technologies Program 2004 Annual Review, Philadelphia, Pennsylvania, 2004, May.
7. Piela, P.; Eickes, C.; Brosha, E.; Garzon, F. and Zelenay, P., “Ruthenium Crossover
in Direct Methanol Fuel Cell with Pt-Ru Black Anode”, J. Electrochem. Soc.,
2004, 151, A2053.
8. Knights, S. D.; Colbow, K. M.; Prierre, J. S. and Wilkinson, D. P., “Aging
mechanisms and lifetime of PEFC and DMFC”, J. Power Source,
2004, 127, 127.
9. Cruickshank, J. and Scott, K., “The degree and effect of methanol crossover in the
direct methanol fuel cell”, J. Power Source, 1998, 70, 40.
10. Kim, Y. S.; Siu, A.; Pivovar, B., “Non-Nafion Membrane Electrode Assemblies”,
HFCIT Program Review, 2005, May.
11. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q., “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for
Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B, 2003, 107, 6292.
12. Hubert, A.; Gasteiger, N.; Markvoic, N. M.; Philip, N.; Ross, P. N., “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk
Electrode Studies of the Pure Gases Including Temperature Effects”, J. Phys. Chem., 1995, 99, 8290.
13. Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M., “A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst”, J. Phys. Chem B., 2001, 105, 8097.
14. Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R., “Aspects of the anodic oxidation of methanol”, Catal. Today, 1997, 38, 425.
15. Freelink, T.; Visscher, W.; van Veen, J. A. R., “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surf. Sci., 1995, 335, 353.
16. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., Jr.; Cairns, E., “Methanol Electrooxidation on Well-Characterized Pt-Ru Alloys”, J. Phys. Chem., 1993, 97 12020.
17. Rauhe, B. R.; McLarnon, F. R.; Cairns, E. J., “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate”, J Electrochem. Soc., 1995, 142, 1073.
18. Brankovic, S. R.; Marinkovic, N. S.; Wang, J. X.; Adžić, R. R., “Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes”, J. Electroanal. Chem., 2002, 532, 57.
19. Lu, C.; Rice, C.; Masel, R. I.; Babu, P. L.; Waszczuk, P.; Kim, H. S.; Oldfoeld, E.; Wieckowaki, A., “UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts”, J. Phys. Chem. B, 2002, 106, 9581.
20. Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K. L.; Smotkin, E. S., “Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes”, J. Phys. Chem. B, 2000, 104, 3518.
21. Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W., “Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation“, J. Phys. Chem. B, 1999, 103, 6968.
22. Shukla, A. K.; Raman, R. K.; Choudhury, N. A.; Priolkar, K. R.; Sarode, P. R.; Emura, S.; Kumashiro R., “Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells”, J. Electroanal. Chem., 2004, 563, 181.
23. Beden, B.; Kadirgan, F.; Lamy, C.; Leger, J. M., “Electrocatalytic oxidation of methanol on platinum-based binary electrodes”, J. Electroanal. Chem., 1981, 127, 75.
24. Zhong, C. J.; Maye, M. M., Adv. Mater., “Core-Shell Assembled Nanoparticles as Catalysts”, 2001, 13, 1507.
25. Hamnett, A., “Mechanism and electrocatalysis in the direct methanol fuel cell”, Catal. Today, 1997, 38, 445.
26. Carrete, L.; Andreas, Friedrich, K. A.; Stimming, U., “Fuel Cells: Principles, Types, Fuels, and Applications”, Chem. Phys. Chem., 2000, 1, 162.
27. Ledjeff-Hey, K.; Heinzel, A., “Critical issues and future prospects for solid polymer fuel cells”, J. Power Sources, 1996, 61, 125.
28. Watanabe, M.; Furuuchi, Y.; Motoo, S., “Electrocatalysis by ad-atoms PART XIII. preparation of ad-electrodes within ad-atoms for methanol, formaldehyde and formic acid fuel cells”, J. Electroanal. Chem., 1985, 191, 367.
29. Watanabe, M.; Uchida, M.; Motoo, S., “Prepatation of high dispersed Pt+Ru alloy clusters and the activity for electrooxidation of methanol”, J. Electroanal. Chem.,1987, 229, 395.
30. Chu, D.; Gilman, S., J. Electrochem. Soc., “Methanol Elecfro-oxidation on Unsupported Pt-Ru Alloys at Different Temperatures”, 1996, 143, 1685.
31. Venkataraman, R.; Kunz, H. R.; Feton, J. M., “Development of New CO Tolerant Ternary Anode Catalysts for Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., 2003, 150, A278.
32. Ley, K. L.; Liu, R.; Pu, C., J. Electrochem. Soc., “Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys”, 1997, 144, 1543.
33. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Science, “Combinatorial Electrochemistry: A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts”, 1998, 280,1735.
34. Arico, A. S.; Poltarzewski, Z.; Kim, H., “Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, J. Power Sources, 1995, 55, 159.
35. Choi, W. C.; Kim, J. D.; Woo, S. I., “Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry”, Catal. Today, 2002, 74, 235.
36. Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J. W., “Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts: The Importance of Mixed Electron/Proton Conductivity”, Langmuir 1999, 15, 774.
37. Link, S.; Wang, Z. L.; El-Sayed, M. A. “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition”, J. Phys. Chem. B, 1999, 103, 3529.
38. de Mongeot, F. B.; Scherer, M.; Gleich, B.; Kopatzki, E.; Behm, R. J., “CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces - a combined STM and TPD/TPR study“, Surf. Sci., 1998, 411, 249.
39. Polak, M.; Rubinovich, L., Surf. Sci. Rep., “The interplay of surface segregation and atomic order in alloys”, 2000, 38, 127.
40. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M., “The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts”, J. Am. Chem. Soc., 2005, 127, 6819.
41. Roth, C.; Benker, N.; Buhrmester, Th.; Mazurek, M.; Loster, M.; Fuess, H.; Koningsberger, D. C.; Ramaker, D. E., “Determination of O[H] and CO Coverage and Adsorption Sites on PtRu Electrodes in an Operating PEM Fuel Cell”, J. Am. Chem. Soc., 2005, 127, 14607.
42. Tong, Y.Y.; Rice, C.; Wieckowski, A.; Oldfield, E, “195Pt NMR of Platinum Electrocatalysts: Friedel-Heine Invariance and Correlations between Platinum Knight Shifts, Healing Length, and Adsorbate Electronegativity”, J. Am. Chem. Soc., 2000, 122, 11921.
43. Tong, Y. Y.; Yonezawa, T.; Toshima, N.; Van der Klink, J. J., “195Pt NMR of Polymer-Protected Pt/Pd Bimetallic Catalysts“, J. Phys. Chem., 1996, 100, 730.
44. Wang, Z.; Ansermett, J. P.; Slichter, C. P., “Nuclear magnetic resonance study of Pt–Rh bimetallic clusters”, J. Chem. Soc., Faraday Trans., 1988, 84, 3785.
45. Babu, P. K.; Kim, H. S.; Oldfield, E.; Wieckowski, A., “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for
Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B., 2003, 107, 7595.
46. Haubold, H. G.; Wang, X. H., “ASAXS studies of carbon supported electrocatalysts”, Nucl. Instr. And Meth. in Phys. Res. B, 1995, 97, 50.
47. 鄭有舜;賴英煌;許火順;劉定國;孫亞賢;宋艷芳;李志甫, “ASAXS and WAXS for the structure of Pt/Ru catalyst nanoparticles supported on Carbon matrix”, 燃料電池分析技術研討會,台北,2005,四月。
48. Bagotsky, V. S.; Vassilev, Y. B., “Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals”, J. Electroanal. Chem., 1977, 81, 229.
49. Zhu, Y.; Uchida, H.; Yajima, T.; Watanabe, M., “Attenuated Total Reflection-Fourier Transform Infrared Study of Methanol Oxidation on Sputtered Pt Film Electrode”, Langmuir, 2001, 17, 146.
50. Goodenough, J. B.; Manoharan, R.; Shukla, A. K.; Ramesh, K. V., “Intraalloy Electron Transfer and Catalyst Performance: A Spectroscopic and Electrochemical Study”, Chem. Mater., 1989, 1, 391.
51. Yajima, T.; Uchida, H.; Watanabe, M., “In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy”, J. Phys. Chem. B, 2004, 108, 2654.
52. Shim, J.; Yoo, D. Y.; Lee, J. S., “Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta., 2000, 45, 1943.
53. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J., “Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and
Electrocatalytic Activities for Oxygen Reduction-XRD, XAS, and Electrochemical Studies”, J. Phys. Chem., 1995, 99, 4577.
54. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997.
55. Tran, T. D.; Langer, S. H., “Electrochemical Measurement of Platinum Surface Areas on Particulate Conductive supports”, Anal. Chem., 1993, 65, 1805.
56. Markovic´, N. M; Grgur, B. N; Lucas, C. A.; Ross, P. N., “Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions”, J. Phys. Chem. B, 1999, 103, 487.
57. Micromeritics��, “AutoChem II 2920 Automated Catalyst Characterization System Operator’s Manual V3.03”, 2005, May.
58. Thermo ELECTRON, “ProLab Operations Manual”, 2005, March.
59. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., “Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy”, J. Am. Chem. Soc., 2005, 127, 11140.
60. Radmilović, V.; Gasteiger, H. A.; Ross, Jr. P. N., “Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation”, J. Catal., 1995, 154, 98.
61. Manohara, R.; Goodenough, J. B., “Methanol oxidation in acid on ordered NiTi”, J. Mater. Chem., 1992, 2, 875.
62. Han, B.C; Van der Ven, A.; Ceder, G; Hwang, B. J., “ Surface segregation and ordering of alloy surfaces in the presence of adsorbates”, Phys. Rev. B, 2005, 72, 205409.
63. Hadzi-Jordanov, S.; Angerstein-Kozlowska, H.; Vukoviff, M.; Conway, B. E., “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes”, J. Electrochem. Soc., 1978, 125, 1473.
64. Mlurar, H.; Gonzalez, R. D., “Temperature-Programmed Desorption and Temperature-Programmed Reaction Studies of CO over Well-Characterized Silica-Supported Pt-Ru Bimetallic Clusters”, J. Phys. Chem., 1982, 86, 1577.
65. Huang, S. Y.; Chang, S. M.; Yeh, C. T., “Characterization of Surface Composition of Platinum and Ruthenium Nanoalloys Dispersed on Active Carbon”, J. Phys. Chem. B, 2006, 110, 234.
66. Ralph, T. R.; Hogarth, M. P., “Catalysis for Low Temperature Fuel Cells”, Platinum Metals Rev., 2002, 46, 117.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top