跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙皇源
研究生(外文):Huang-Yuan Chao
論文名稱:質子交換膜燃料電池系統溫度控制
論文名稱(外文):Temperature Control of Proton Exchange Membrane Fuel Cell Stack
指導教授:周宜雄周宜雄引用關係
指導教授(外文):Yi-Shyong Chou
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:126
中文關鍵詞:溫度控制質子交換膜燃料電池
外文關鍵詞:Temperature controlProton exchange membrane fu
相關次數:
  • 被引用被引用:2
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以數值模擬的方式,探討質子交換膜燃料電池起步階段、負載改變階段之動態,發現有一大量電流負載改變時,會使系統電池溫度超過操作溫度範圍且氧氣過量比下降之氧氣枯竭現象;當電池溫度高於操作溫度範圍內時,將造成高分子薄膜脫水、破裂,嚴重將使燃料電池失去效能,且電池溫度對電池操作的持久性、安全及穩定的輸出效率有深厚的影響,因此如何控制系統電池溫度在適當的操作溫度下為一重要的課題;而氧氣枯竭現象將使高分子薄膜損傷,如何避免此現象的發生,也是現今燃料電池控制的重要議題。
本論文提出兩個控制架構,藉著冷卻水流率控制系統溫度在操作溫度範圍內,分別比較控制效果與韌性;在氧氣枯竭問題,亦提出一控制架構控制氧氣過量比。
This research, by way of numerical simulation, investigated the dynamics of the start-up, and load changing phase of a proton exchange membrane fuel cell; it is known that when there is a large load current change, the fuel cell system’s temperature will exceed the operating temperature and the occurrence of oxygen starvation phenomena which causes the drop in oxygen excess ratio; when the stack temperature exceed the operating range, membrane dehydration and tearing occurs, in severe cases, the fuel cell become dysfunctional. Moreover, since stack temperature has a great impact fuel cell system on the longevity, safety, output stability, the control of the temperature within the operating range is an important topic; in addition, oxygen depletion will damage the membrane and how to avoid the occurrence of oxygen starvation phenomena is also an important issue in the control of fuel cell.
Two control structures have been proposed: by manipulating cooling water flow rate to keep the fuel cell system temperature within the operating range; the performance and robustness of the methods are compared. A control structure to control the oxygen excess ratio is also proposed.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖表索引 vi

第一章 緒論
1-1 前言 1
1-2 燃料電池發展歷史 2
1-3 燃料電池的特點 3
1-4 文獻回顧 4
1-5 研究動機 5
1-6 論文章節組識安排 6

第二章 膜燃料電池
2-1 前言 7 2-2 燃料電池作動原理 8
2-3 燃料電池分類 9
2-4 質子交換膜燃料電池介紹 15
2-4.1 流場板 16
2-4.2 擴散層 18
2-4.3 觸媒層 19
2-4.4 質子交換膜 20

第三章 數學模式的建立
3-1 前言 22 3-2 數學模式假設 24
3-3 極化曲線經驗式 25
3-3-1 活化過電位經驗式 26
3-3.2 歐姆過電位經驗式 28
3-3.3 燃料電池組輸出功率與能量轉化效率 30
3-4 熱傳動態方程 31
3-5 質傳動態方程 33
3-6 冷卻水溫度動態方程 34


第四章 質子交換膜燃料電池之模擬
4-1 前言 35
4-2 數值計算 35
4-2.1 模擬活性過電位 37
4-2.2 極化曲線與熱傳動態方程聯立解 37
4-2.3 極化曲線、熱傳動態及質傳動態方程聯立解 37
4-2.4 使用冷卻水出口溫度動態方程到電池組溫度方程 38
4-3 模擬起動階段、負載改變 39
4-3.1 起動階段 39
4-3.2 負載改變 41
4-4 質子交換膜燃料電池組控制問題 44
4-4.1 前言 44
4-4.2 系統溫度敏感度分析 44

第五章 溫度控制及氧氣過量比控制與討論
5-1 前言 52
5-2 系統模式判別 53
5-3 溫度控制策略 57
5-3.1 控制策略(一)配合傳統控制器控制系統溫度 58
5-3.2 PI控制器控制系統溫度 59
5-3.3 Z-N調諧法之韌性控制 61
5-4 控制策略(二)配合傳統控制器與非線性控制器控制系統溫度 71
5-4.1 傳統控制器回饋控制 73
5-4.2 通用模式控制 77
5-5 比較不同控制策略控制效果 96
5-6 溫度與氧氣過量比同時控制 98

第六章 總結 107


符號說明 108
參考文獻 111
附錄A 總包熱傳係數 114
附錄B 控制器參數調諧方法 119
附錄C 冷卻水出口溫度設定點之預測器 123
附錄D 通用模式控制 124
1.Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., Rodrigues A.,1994. Parametric modeling of the performance of a 5-kw proton exchange membrane fuel cell stack. Journal of Power Sources 49, 349-356.
2.Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., 1995. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. Journal of The Electrochemical Society 142, 1-8.
3.Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., 1995. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. Journal of The Electrochemical Society 142, 9-15.
4.Amphlett, J. C., Mann, R. F., Peppley, B. A., Roberge, P. R., Rodrigues, A., 1996. A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources 61, 183-188.
5.Buchi, F. N., Scherer, G. G., 1996. In-situ resistance measurement of Nafion 117 membranes in polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry 404, 37-43.
6.Chylla, R. W., Haase, D. R., 1993. Temperature control of semibatch polymerization reactors. Computers & Chemical Engineering vol.17, 257-264.
7.Correa, J. M., Farret, F. A., Canha, L. N., 2001. An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model. IECON’01:The 27th Annual Conference of the IEEE Industrial Electronics Society, 141-146.
8.Fuller, T. F., Newman, J., 1993. Water and thermal management in solid-polymer-electrolyte fuel cells. Journal of The Electrochemical Society 140, 1218-1225.
9.Hamelin, J., Agbossou, K., Laperriere, A., Laurencelle, F., Bose, T. K., 2001. Dynamic behavior of a PEM fuel cell stack for stationary applications. International Journal of Hydrogen Energy 26, 625-629.
10.Incoropera, F. P., 1999. Liquid cooling of electronic devices by single-phase convection. Wiley.
11.Kim, J., Lee, S. M., Srinivasan, S., Chamberlin, C. E., 1995. Modeling of proton exchange membrane fuel cell performance with an empirical equation. Journal of The Electrochemical Society 142, 2670-2674.
12.Khan, M. J., Iqbal, M. T., 2005. Dynamic nodelling and simulation of a fuel cell generator. Fuel Cells May 1, 97-104.
13.Khan, M. J., Iqbal, M. T., 2005. Modelling and analysis of electrochemical, thermal, and reactant flow dynamics for a PEM fuel cell system. Fuel Cells May 4, 463-475.
14.Laurencelle, F., Chahin, R., Hamelin, J., Agbossou, K., Fournier, M., Bose, T. K., Laperriere, A., 2001. Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack. Fuel Cells Journal 1, 66-71.
15.Lee, J. H., Lalk, T. R., Appleby, A. J., 1998. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. Journal of Power Sources 70, 258-268.
16.Lee, P. L., Sullivan, G. R., 1998. Generic model control(GMC). Computer chemical Engineering Vol.12 No.6, 573-580.
17.Mann R. F., Amphlett J. C., Hooper M. I., Jensen H. M., Peppley B. A., Roberge P. R., 2000. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 86 , 173-180.
18.Pukrushpan J. T., Peng H., Stefanopoulou A.G. 2004.Control of fuel cell breathing. IEEE Control System Magazine , 30-46.
19.Springer, T. E., Zawodzinski, T. A., and Gottesfeld, S., 1991. Polymer electrolyte fuel cell model. Journal of The Electrochemical Society 138 , 2334-2342.
20.Seborg, D. E., Edgar, T. F., Mellichamp, D. A., 2004. Process dynamics and control. John Wiley & Sons.
21.Swan, D. H., Dickinson, B. E., Arikara, M. P., 1994. Proton exchange membrane fuel cell characterization for electric vehicle applications. Advancements in Electric and Hybrid Electric Vehicle Technology. 19-30.
22.Wangner, N., 2002. Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. Journal of Applied Electrochemistry 32, 859-863.
23.Xue, X., Tang, J., 2005. PEM fuel cell dynamic model with phase change effect. Transactions of the ASME Vol.2 November, 274-283.
24.Yi, J. S., Nguyen, T. V.,1998. An along-the-channel model for proton echange membrane fuel cells. Journal of The Electrochemical Society 145, 1149-1159.
25.黃鎮江, 2003. 燃料電池, 全華科技圖書股份有限公司.
26.陳榮輝, 1995. 自動化程序控制, 高立圖書有限公司.
27.曾重仁, 羅世坤, 2004. 直接甲醇型燃料電池(DMFC)與氫氣質子交換膜燃料電池(PEMFC), 化工技術期刊 2004年 4月號 p165-179.
28.劉家和, 2005. 質子交換膜燃料電池系統控制, 國立台灣科技大學化學工程系碩士學位論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top