跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王澤元
研究生(外文):Tse-yuan Wang
論文名稱:PI配向膜加參數與LCD光電特性相關性之研究
論文名稱(外文):Study of The Correlation Between The Processing Parameter of PI Rubbing Film and The Photoelectric Characteristics of LCD
指導教授:邱顯堂
指導教授(外文):Hsien-tang Chiu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:高分子系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:95
中文關鍵詞:PI配向膜預傾角配向布
外文關鍵詞:PI rubbing filmrubbing clothpretilt angle
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1003
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文的研究方向主要在探討液晶與聚醯亞胺(Polyimide;簡稱PI)配向膜之配向摩擦(Rubbing)加工參數及針對上、下PI配向膜配向方向不同組成液晶盒(CELL)後之光電特性,以了解PI受配向布壓入量不同之表面型態變化和配向膜配向方向不同組成CELL後其液晶紋理圖、預傾角及電壓與穿透率(V-T)圖等光電性質。
實驗上使用原子力顯微鏡(Atomic Force Microscope;簡稱AFM),觀察未配向及經配向布壓入量為3mm、4mm摩擦配向後之表面型態,並使用偏光顯微鏡(Polarizing Microscope;簡稱POM);任意波形產生器(Arbitrary Waveform Generator;簡稱 AWG)及高速電力增幅器,觀察未配向和不同配向方向為交叉0°(↑↑)以及交叉90°(↗↖)組合成的Cell,在印加電壓0~10V下之液晶紋理圖及電壓與穿透率之關係圖做分析探討。再使用預傾角量測儀((LCD PROPERTIES EVALUATION DEVECE OMS-CP3)量測上述之Cell預傾角。
實驗結果顯示,當配向布壓入量愈大時,PI表面刷痕愈明顯粗糙度愈高,且預傾角較未配向前大。而在未配向時的液晶紋理圖呈現雜亂現象;在配向為Rubbing交叉90°(↗↖)時其色彩鮮明;在配向為Rubbing交叉0°(↑↑)時其色彩灰暗。另外,在電壓與穿透率之關係圖可得知配向為Rubbing交叉90°(↗↖)時,其試片所要達到最大穿透率所需驅動電壓較小。而在配向為Rubbing交叉0°(↑↑)時,其所需驅動電壓較大且曲線呈現較不穩定狀態。當在未配向時,所需驅動電壓更大,且呈現更不穩定狀態。最後在預傾角的量測可知未配向之樣品預傾角平均為3.010°,而配向為Rubbing交叉90°(↗↖)其預傾角平均為3.899°,當配向為Rubbing交叉0°(↑↑)時平均為5.895°,且數值為跳躍式不穩定。
The research direction of this article is to study the rubbing processing parameter of liquid crystal and Polyimide(PI) rubbing film .Besides, it also studies the photoelectric characteristics of the liquid crystal cell, which is formed from the upper and lower homogeneous alignment of PI-type rubbing membrane with different rubbing direction. With these researches, the change of the superficial attitudes of the rubbing depth of homogeneous alignment, the liquid crystal grain map of the cell formed by different direction of rubbing membrane, and the photoelectric characteristics of the pretilt angle and Voltage-Transmittance (V-T) can be understood.

In the experiment, the Atomic Force Microscope (AFM) is used to observe the superficial attitudes which is not rubbed, and those rubbed by the rubbing depth of 3mm and 4mm. Besides, the Polarizing Optical Microscope (POM), Arbitrary Waveform Generator (AWG) and Hight Speed Powre Amplifier to observe the cell which is not rubber, and those combined by rubbing direction with intersection of 0°(↑↑)and 90°(↗↖). The relationships between liquid crystal grain map and the transmittance under 0-10V of impressing voltage will be analyzed. Then the LCD Properties Evaluation Devece OMS-CP3 is used to measure the pretilt angle of cell mentioned above.

The experimental result shows that when the rubbing depth is large, the surface brushing mark of PI is more obvious and the roughness is higher. Besides, the pretilt angle is greater than the one that is not rubbed. Before it is rubbed, the liquid crystal phase map appears as random. When the intersection is 90°(↗↖), the color is bright. When the intersection is 0°(↑↑),the color is gloomy. Furthermore, from the relationship between the voltage-Transmittance and the rate of penetration, it is found that when the intersection of rubbing is 90°(↗↖),the driving voltage needed for the testing wafer to achieve the highest transmittance is relatively low. When the intersection of rubbing is 0°(↑↑), the driving voltage needed is higher and the curve appears unstable. When it is not rubbed, the driving voltage needed is even higher and it appears even more unstable. Finally, from the measurement of pretilt angle, it is found that the average pretilt angle of the samples, which are not rubbed, is 3.010°. When the intersection of rubbing is 90°(↗↖), the average pretilt angle is 3.899°. When the intersection of rubbing is 0°(↑↑), the average pretilt angle is 5.895°, and the value hops and is unstable.
中文摘要………………………………………………………………………………Ⅲ
英文摘要………………………………………………………………………………Ⅳ
致謝……………………………………………………………………………………Ⅶ
目錄……………………………………………………………………………….…Ⅸ
圖表索引………………………………………………………………………………Ⅹ
第1章 緒論......……………………………………………………………………1
第2章 原理及文獻回顧…………………………….………………………………4
2-1 液晶簡介…………..……………………………………………………4
2-1-1 液晶的發現…..………………………………………………………………4
2-1-2 何謂液晶…..…………………………………………………………………4
2-1-3 液晶的分類…..………………………………………………………………5
2-1-4 液晶分子的物理性質參數.……………..………………………………… 8
2-2 配向簡介…………………………………………..……………………………9
2-2-1 液晶分子的配向技術…..…….........……..………………………….9
2-2-2 液晶配向摩擦法之配向機制…..……………..……………12
2-2-3 配向理論…………….…………..……………………………13
2-2-4 液晶顯示器之分類.…………………………..………..…………………14
2-3 聚醯亞胺簡介………………………………………..…………….….16
2-3-1聚醯亞胺之合成…….…………………….……………………16
2-3-2 聚醯亞胺在液晶配向膜上的應用……………………………18
2-4 高分子表面AFM之觀測與原理………………….………………………19
2-5 TFT-LCD構造與製造程序………….……………………………………20
2-6 液晶盒製作方法…………….……….……….………………………21
2-7 參考文獻…………………………………..……………………………24
第3章 PI配向膜加工參數與LCD光學特性相關性之研究………..……………….43
摘要……………….……….………….………………………………………44
3-1 前言…………………………….………………………………………45
3-2 實驗………….…………………………………………………………46
3-2-1 材料及液晶盒之製備…………………………………………………………46
3-2-2 液晶盒PI配向層之配置組件之製作…………………………46
3-2-3 測定…………...…………….………………………………47
3-2-3-1. 熱性質之測定…………………………..……………47
3-2-3-2. 熱重分析儀之測定……………………………………47
3-2-3-3. 固含量之測定………………..……...….….……47
3-2-3-4. 黏度之測定………………………………………….47
3-2-3-5. 表面型態之觀察……………………………………48
3-2-3-6. 預傾角之測定..……………….……………….…48
3-2-3-7. 表面組織之觀測………...…………………………48
3-2-3-8. 偏光顯微鏡觀察液晶相紋理圖.……………..……48
3-2-3-9. 電壓與光穿透率(V-T cruve)特性之量測…………49
3-3結果與討論…………………………………………..…………………50
3-3-1 液晶盒關鍵材料之基本特性分析探討…………………..50
3-3-2 PI配向膜之AFM表面型態觀察與預傾角之間關係探討..51
3-3-3 配向方向對預傾角之影響探討……………………52
3-3-4 應用不同配向膜式下,探討電壓與光穿率之變化 ………53
3-3-5 印加電壓與液晶紋理圖之影響探討…...……………….55
第4章 結論…………………………………………………………..……………95
參考文獻…………………….………………..…………………………58
第二章參考文獻
1.顧鴻壽,“光電液晶平面顯示器技術基礎與應用”,新文京開發出版股份有限公司,pp.143,(2003).
2.楊宜寬、郭蘭生、鄭殷立,“液晶化學及物理入門”,偉明圖書有限公司,pp.101,(2001).
3.蕭仁義,“染料參混膽石醇液晶之光學特性研究”,台灣科技大學, pp.5,(2003).
4.馬瑞穗,“混合扭轉向列(HAN)液晶元件光電特性探討”,台灣科技大學, pp.7,(2002).
5. W .Urbach ,M .Boix ,and E .Guyon, Appl. Phys. Lett , 1974 ,25 ,479
6. U.Wolf ,W .Greubel , and H .Kruger ,Mol . Cryst .,1997 ,23.187
7. T. Sasaki, H. Fujil and M.Nishikawa, Jpn. J. Appl.Phys. Part2,31,L632,1992
8. J. Chen, H. Vithana, D. Johnson, A. Albaeici,J .Lando ,L .A .Mann ,Jr ,M .-A. Kakimota, Mol. Cryst. Liq. Cryst., 1996,49,275
9. Y. Kawata and Y. Mori, JPN. J.Appl.Phys .Phys.Part2 , 35,L40,1996.
10. K. Ohmuro, S. Kataoka. T. Sasakiand Y, Koike, SID97Digest845 (1997) 
11. E.S.Lee, T.Uchida, M. Kano,.M. Abe, and K.Sugamura, SID 93`Digest, 957,1993.
12. K. Ichimura, Chem. Rev.,100, 1847, 2000.
13. M.O`Neill and S. M. Kelly, J. Phys.D:Apply.
Phys.,33,R67,2000.
14. J .A . Castellano, Mol. Cryst. Liq. Cryst.,94,33,1983.
15. E. S. Lee,Y. Saito,and T. Uchida,Jpn. J. Appl. Phys. Part2,32.L1822,1993.
16. E. S. Lee,Y. Saito,and T. Uchida,Jpn. J. Appl. Phys. Part2,32,L1822,1993.
17. J. M. Geary,J. W. Goodby,A. R. Kmetz,and J. S. Patel,J. Appl. Phys.,62,4100,1987.
18. .N. A. J. M. Van Aerle and A. J. W. Tol,
Macromol.,27,6520,1994.
19. S. Ishihara,H. Wakemoto,K. Nakazima,and Y. Matsuo
,Liq.Cryst.,4d(6),669,1989.
20. J. L.West,G. R. Magyar,J. R. Kelly,S. Kobayashi,Y. Limura and N. Yoshida,Appl,Phys. Lett.,67.155,1995.
21. W. Chen,M. B. Feller,and Y. R. Shen,Phys. Rer. Lett.,63,2665,1989
22. M. B. Feller,W. Chen,and Y. R. Shen,Phys,Rev. A,43,6778,1991.
23. D. W. Berreman,Phy. Rev. Lett.,28,1683,1972.
24. 邱智強,“感壓式雙穩定態液晶元件之光電行為”, 台灣科技大學, pp.15(2003).
25. 日本液晶應用技術研究會, 最新液晶應用技術”,1994
26. R.A.Meyers,J.Polym .Sci .: Part Al,(10),p2757-2762, (1969).
27. N.Bilow,A.L.Landis and L.J. Miller,U.S.Patent 3,845,018,(1974).
28. T. Nishino, M. Kotera, N. Inayoshi, N. Miki, K. Nakamae,
”Residual stress and microstructures of aromatic polyimide with different imidization processes”Polymer41,6913-6918(2000)
29. .M. K. Ghosh and K. L. Mittal,Polyimides :Fundanentals and Applications ,Marcel Dekker,New York,p7-21,(1996).
30. C.E.Sroog,A. L .Endrey,S. V. Abramo,C. E. Berr,W. M. Edwards. And K. L. Olivier,J. Polym. Sci,:Part A,3,p1373-1390,(1965).
31. M. K. Ghosh and K. L.Mittal,Polyimides:Fundanentals and Applications,Marcel Dekker,New York,p15-23,(1996)
32. Y. J.Kim,T. E. Glass,G. D. Lyel and J. E. McGrath,Macromolecules,26,p1344-1358,1993).
33. M. Kotera, T. Nishino, K. Nakamae”Imidization processes of aromatic polyimide by temperature modulated DSC”Polymer 41 ,3615-3619,(2000).
34. 林鶴南,李龍正,劉克迅,“原子力顯微術及其在半導體研究上的應用”,科技新知,17,3,1995
35. Digtal Instrument ,MultMode Scanning Probe Microscope Microscope Instruction Manual,1996
36. 紀國鐘、鄭晃忠, 液晶顯示器技術手冊, 台灣電子材料與元件協會(2002).
第三章參考文獻
1. Sato, Y., Sato, K., Uchida, T. Jpn. J. Appl. Phys. 1992, 32,579
2. Nakano, F., Isogai, M., Sato, M.Jpn. J. Appl. Phys. 1980,19,2013.
3. W .Urbach ,M .Boix ,and E .Guyon, Appl. Phys. Lett , 1974 ,25 ,479
4. T. Sasaki, H. Fujil and M.Nishikawa, Jpn. J. Appl.Phys. Part2,31,L632,1992
5. J. Chen, H. Vithana, D. Johnson, A. Albaeici,J .Lando ,L .A .Mann ,Jr ,M .-A. Kakimota, Mol. Cryst. Liq. Cryst., 1996,49,275
6. Y. P. Huang, T. Y. Tsai, W. Lee, W. K. Chin, Y. M. Chen,”The Photorefractive Effect of Nematic-Clay Nanocomposites”,Optics Express,2005,13,2058-2063.
7. Y. P. Huang,H. Y. Chen, W. Lee,T. Y. Tsai,W. K. Chin,”Transient behaviour of polarity-reversed current in a liquid-crystal-montmorillonite-clay device”,Nanotechnology,2005,16,590-594.
8. S. Ishihara, H. Wademoto, K. Nakazima, and Y. Matsuo,Liq. Cryst.,4d(6),669,1989.
9. D. W. Berreman,Phy.Rev.Lett.,28,1683,1972.
10. E. S. Lee, Y. Saito, and T. Uchida,Jpn. J.Appl. Phys. Part2,32,L1822,1933.
11. T. Sasaki, H. Fujil and M.Nishikawa, Jpn. J. Appl.Phys. Part2,31,L632,1992
12.K. Okano, Jpn. J. Appl. Phys.,22,L343,1983.
13. J. M. Geary,J. W. Goodby,A. R. Kmetz, and J. S. Patel,J. Appl. Phys.,62,4100,1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top