|
Bibliography [1] http://en.wikipedia.org/wiki/Sql injection. [2] http://en.wikipedia.org/wiki/Denial of service. [3] http://www.cert.org/stats/cert stats.html. [4] http://www.usda.gov/wps/portal/!ut/p/ s.7 0 A/ 7 0 1OB?contentidonly=true&contentid=2006/06/0214.xml. [5] http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html. [6] http://kdd.ics.uci.edu//databases/kddcup99/task.html. [7] http://www.tripwire.com/products/index.cfm. [8] http://freshmeat.net/redir/swatch/10125/url homepage/swatch. [9] http://www.netiq.com/products/sm/default.asp. [10] http://www.snort.org. [11] http://www.bro-ids.org/. [12] Java. www.sun.com. [13] Matlab. www.mathworks.com. [14] I. Basicevic, M. Popovic, and V. Kovacevic. The use of distributed network-based IDS systems in detection of evasion attacks. In AICT/SAPIR/ELETE, pages 78–82. IEEE Computer Society, 2005. [15] P. O. Boykin and V. P. Roychowdhury. Personal email networks: An effective antispam tool. CoRR, cond-mat/0402143, 2004. [16] R. Bragg, M. Rhodes-Ousley, and K. Strassberg. Network Security V The Complete Reference. Tata McGraw Hill, 2004. [17] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.
[18] C. Chen and O. L. Mangasarian. Smoothing methods for convex inequalities and linear complementarity problems. Mathematical Programming, 71(1):51–69, 1995. [19] C. Chen and O. L. Mangasarian. A class of smoothing functions for nonlinear and mixed complementarity problems. Computational Optimization and Applications, 5(2):97–138, 1996. [20] V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John Wiley & Sons, New York, 1998. [21] W. W. Cohen. Fast effective rule induction. In ICML, pages 115–123, 1995. [22] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience Publishers,New York, 1953. [23] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.Cambridge University Press, Cambridge, 2000. [24] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data, January 17 2002. [25] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. In A. Smola, P. Bartlett, B. Sch¨olkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 171–203, Cambridge, MA, 2000. MIT Press. [26] R. Fletcher. Practical Methods of Optimization. wiley, Chichester, second edition, 1987. [27] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, and B. Pfahringer. WEKA - A machine learning workbench for data mining. In Oded Maimon and Lior Rokach, editors, The Data Mining and Knowledge Discovery Handbook, pages 1305–1314. Springer, 2005. [28] J. F¨urnkranz and G. Widmer. Incremental reduced error pruning. In ICML, pages 70–77, 1994. [29] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo. One class support vector machine for detecting anomalous windows registry. Dept. of Computer Science, Columbia University, 1214 Amsterdam Avenue, New York, NY 10025. [30] C.-M. Huang, Y.-J. Lee, D. K. J. Lin, and S.-Y. Huang. Model selection for support vector machines via uniform design. The special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis, 2006. [31] V. Jacobson and et al. TCPDUMP(1), BPF... Unix Manual Page, 1990. [32] H. S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In Proc. IEEE Symposium on Research in Security and Privacy, pages 316–326, 1991.
[33] T. Joachims. Learning to Classify Text Using Support Vector Machines: Methods, Theory, and Algorithms. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002. [34] K. Kendall. A database of computer attacks for the evaluation of intrusion detection systems. Master’s thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999. [35] W. Lee. A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems. PhD thesis, Columbia University, 1999. [36] W. Lee, S. Stolfo, P. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop, and J. Zhang. Real time data mining-based intrusion detection, 2001. [37] Y.-J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine. Computational Optimization and Applications, 20:5–22, 2001. Data Mining Institute, University of Wisconsin, Technical Report 99-03. ftp://ftp.cs.wisc.edu/pub/dmi/techreports/ 99-03.ps. [38] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In Proceedings of the DARPA Information Survivability Conference and Exposition, Los Alamitos, CA, 2000. IEEE Computer Society Press. [39] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion detection evaluation. Computer Networks, 34(4):579–595, 2000. [40] M. V. Mahoney. A Machine Learning Approach to Detecting Attacks by Identifying Anomalies in Network Traffic. PhD thesis, College of Engineering, Florida Institute of Technology, 2003. [41] O. L. Mangasarian. Mathematical programming in neural networks. ORSA Journal on Computing, 5(4):349–360, 1993. [42] O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support vector machines. IEEE Transactions on Neural Networks, 10:1032–1037, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps. [43] D. J. Marchette. Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001. [44] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages 130–136, 1997. [45] H.-J. Park and S.-B. Cho. Privilege flows modeling for effective intrusion detection based on HMM, 2002. [46] B. Pfahringer. Winning the KDD99 classification cup: Bagged boosting. SIGKDD Explorations, 1(2):65–66, 2000.
[47] H. Duan Q.-A. Tran and X. Li. One-class support vector machine for anomaly network traffic detection. China Education and Research Network (CERNET), Tsinghua University, Main Building, 310 Beijing 100084, China. [48] S. E. Smaha. Tools for misuse detection. In Proceedings of ISSA ’93, Crystal City, VA, April 1993. [49] S. J. Stolfo, S. Hershkop, C.-W. Hu, W.-J. Li, O. Nimeskern, and K.Wang. Behaviorbased modeling and its application to email analysis. ACM Transactions on Internet Technology (TOIT), 2006. [50] S. J. Stolfo, S. Hershkop, K. Wang, O. Nimeskern, and C.-W. Hu. A behavior-based approach to securing email systems. In MMMACNS: International Workshop on Methods, Models and Architectures for Network Security, LNCS, 2003. [51] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995. [52] V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998. [53] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In Ravi Sandhu, editor, Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, November 2002. ACM Press. [54] K. Wang and S. J. Stolfo. One class support vector machine for detecting anomalous windows registry. Computer Science Department, Columbia University, 500 West 120th Street, New York, NY, 10027. [55] Wikipedia. Anti-virus software. http://en.wikipedia.org/wiki/Antivirus software. [56] Wikipedia. Intrusion-detection system. http://en.wikipedia.org/wiki/Intrusiondetection system. [57] L.-K. Yang. A cascading intrusion detection framework using ocsvm and ssvm. Master’s thesis, National Taiwan University of Science and Technology, 2005. [58] R. Zalenski. Firewall technologies. IEEE Potentials, 2002.
|