|
1. P. X. Gao and Z. L. Wang, “Nanoarchitectures of semiconducting and piezoelectric zinc oxide”, J. Appl. Phys. Vol.97, No.4, pp.044304-1 - 044304-7(2005). 2. D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes”, Appl. Phys. Lett. Vol.86, No.22, pp.222101-1 - 222101-3 (2005). 3. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, “Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE”, J. Crystal. Growth Vol.184, pp.605-609 (1998). 4. R. Martins, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla, and G. Kiriakidis, “Zinc oxide as an ozone sensor”, J. Appl. Phys. Vol.96, No.3, pp.1398-1408 (2004). 5. S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, “Field emission studies on thin films of zinc oxide nanowires”, Appl. Phys. Lett. Vol.83, No.23, pp.4821-4823 (2003). 6. Zhiyong Fan and Jia G. Lu, “Gate-refreshable nanowire chemical sensors”, Appl. Phys. Lett. Vol.86, No.12, pp.123510-1 - 123510-3 (2005). 7. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, ”Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting device”, Appl. Phys. Lett.Vol.83, No9, pp.1875-1877 (2003). 8. H. Kim and W. Sigmund, ”Zinc oxide nanowires on carbon nanotubes”, Appl. Phys. Lett. Vol.81, No.11, pp.2085-2087 (2002). 9. S. H. Jo, D. Banerjee, and Z. F. Ren, ”Field emission of Zinc oxide nanowires grown on carbon cloth”, Appl. Phys. Lett. Vol.85, No.8, pp.1407-1409 (2004). 10. R. C. Wang, C. P. Liu, and J. L. Huang, S.-J. Chen, ”ZnO hexagonal arrays of nanowires grown on nanorods”, Appl. Phys. Lett. Vol.86, No.25, pp.251104-1 - 251104-3 (2005). 11. C. X. Xu and X. W. Sun, ”Field emission from zinc oxide nanopins”, Appl. Phys. Lett. Vol.83, No.3, pp.3806-3808 (2003). 12. H. Yan, R. He, J. Johnson, M. Law, Richard J. Saykally, and P. Yang, ”Dendritic Nanowire Ultraviolet Laser Array”, J. Am. Chem. SOC. Vol.125, pp.4728-4729 (2003). 13. C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu, ”Zinc oxide nanodisk”, Appl. Phys. Lett. Vol.85, No.17, pp.3878-3880 (2004). 14. Jason B. Baxter, Feng Wu, and Eray S. Aydil, ”Growth mechanism and characterization of zinc oxide hexagonal columns”, Appl. Phys. Lett. Vol.83, No.18, pp.3797-3799 (2003). 15. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, ”Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, J. Appl. Phys. Vol.84, No.7, pp.3912-3918 (1998). 16. A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, and H. Koinuma, “Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser”, Materials Science and Engineering, Vol.B56, pp.263-266 (1998). 17. K. Kihara and G. Donny, “Anharmonic thermal vibrations in ZnO”, The Canadian Mineralogist, Vol.23, pp.647-654 (1985). 18. J. J. Wu and S. C. Liu, ”Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. Vol.14, pp.215-218 (2002). 19. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, ”Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach”, Appl. Phys. Lett. Vol.78, No.4, pp.407-409 (2001). 20. G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, “One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering”, Appl. Phys. Lett. Vol.87, No.23, pp.231903-1- 231903-3 (2001). 21. Y. Chen, Z. Zhu, D. M. Bagnall, T. Sekiuchi, and T. Yao, “ZnO quantum pyramids grown on c-plane sapphire by plasma-assisted molecular beam epitaxy”, J. Crystal. Growth Vol.184/185, pp.269-273 (1998). 22. R. Tena-Zaera, M. C. Martinez-Tomas, S. Hassani, R. Triboulet, and V. Munoz– Sanjose, ”Study of the ZnO crystal growth by vapour transport methods”, J. Crystal Growth, Vol.270, pp.711-721 (2004). 23. J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, Z. L. Wang, and S. Fujita, “ZnO quantum dots synthesized by a vapor phase transport process”, Appl. Phys. Lett. Vol.88, No.6, pp.063110-1 - 063110-3 (2006). 24. V. Craciun, J. Elders, J. G. E. Gardeniers, and I. W. Boyd, ”Characteristics of high quality ZnO thin films deposited by pulsed laser deposition” Appl. Phys. Lett. Vol.65, No.23, pp.2963-2965 (1994). 25. E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide”, J. Appl. Phys. Vol.49, No.3, pp.1188-1195 (1978). 26. B. Lin, Z. Fu and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrate”, Appl. Phys. Lett. Vol.79, No.7, pp.943-945 (2001). 27. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors” Appl. Phys. Lett. Vol.68, No.3, pp.403-405 (1996). 28. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon”, Appl. Phys. Lett. Vol.43, No.10, pp.943-945 (1983). 29. H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy”, Appl. Phys. Lett. Vol.46, No.4, pp.381-383 (1985). 30. Y. H. Xie, E. A. Fitzgerald, and Y. J. Mii, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy”, J. Appl. Phys. No.4, Vol.46, pp.381-383 (1991). 31. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 µm from an erbium-doped silicon light-emitting diode”, Appl. Phys. Lett. Vol.64, No.21, pp.2842-844 (1994). 32. K. Takahei and A. Taguchi, “Selective formation of an efficient Er-O luminescence center in GaAs by metalorganic chemical vapor deposition under an atmosphere containing oxygen”, J. Appl. Phys. Vol.74, No.3, pp.1979-1982 (1993). 33. T. Oestereich, C. Swiatkowski, and I. Broser, “Erbium luminescence in doped amorphous silicon”, Appl. Phys. Lett. Vol.56, No.5, pp.446-447 (1990). 34. M. S. Bresler, O. B. Gusev, V. Kh. Kudoyarova, A. N. Kuznetsov, P. E. Pak, E. I. Terukov, I. N. Yassievich, B. P. Zakharchenya, W. Fuhs, and A. Sturm, “Room-temperature photoluminescence of erbium-doped hydrogenated amorphous silicon”, Appl. Phys. Lett. Vol.67, No.24, pp.3599-3601 (1995). 35. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon”, Appl. Phys. Lett. Vol.63, No.14, pp.1942-1944 (1993). 36. T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ~1.54 µm”, Appl. Phys. Lett. Vol.65, No.8, pp.983-985 (1994). 37. T. Oestereich, C. Swiatkowski, and I. Broser, “Erbium luminescence in doped amor- phous silicon”, Appl. Phys. Lett. Vol.56, No.5, pp.446-447 (1990). 38. M. S. Bresler, O. B. Gusev, V. K. Kudoyarova, A. N. Kuznetsov, P. E. Pak, E. I. Terukov, I. N. Yassievich, B. P. Zakharchenya, W. Fuhs, and A. Sturm, “Room- temperature photoluminescence of erbium-doped hydrogenated amorphous silicon”, Appl. Phys. Lett. Vol.67, No.24, pp.3599-3601 (1995). 39. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “Time response of 1.54 µm emission from highly Er-doped nanocrystalline Si thin films prepared by laser ablation”, Appl. Phys. Lett. Vol.74, No.3, pp.377-379 (1999). 40. T. Asatsuma, P. Dodd, J. F. Donegan, J. G. Lunney, and J. Hegarty, ”Er3+-doped silicon prepared by laser doping”, Mater. Res. Soc. Symp. Proc. Vol.301, pp.67-72 (1993). 41. P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. LeGuillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials”, Electron. Lett. Vol.25, No.11, pp.718-719 (1989). 42. A. J. Steckl, M. Garter, R. Birkhahn, and J. Scofield, “Green electroluminescence from Er-doped GaN Schottky barrier diodes, ”Appl. Phys. Lett. Vol.73, No.17, pp.2450-2452 (1998). 43. S. Komuro, T. Katsumata, T. Morkiawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films”, Appl. Phys. Lett. Vol.76, No.26, pp.3935-3937 (2000). 44. Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, “The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition”, J. Appl. Phys. Vol.88, No.1, pp.498-502 (2000). 45. P. C. Rafael, G. L. Araceli, P. Y. Olivier, S. Wilfrid, R. M. Defourneau ,D. Defourneau, E. Millon, J. Perrière, P. Goldner, and B. Viana, “Er-doped ZnO thin films grown by pulsed-laser deposition”, J. Appl. Phys. Vol.97, No.5, pp.054905-1 - 054905-8 (2005). 46. K. Lorenz , E. Alves, E. Wendler, O. Bilani, W. Wesch, and M. Hayes, ”Damage formation and annealing at low temperatures in ion implanted ZnO”, Appl. Phys. Lett. Vol.87, No.19, pp.191904-1 - 191904-3 (2005). 47. X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, and X. W. Fan, ”Room-temperature blue luminescence from ZnO:Er thin films”, Thin Solid Films, Vol.413, pp.257-261 (2002). 48. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, and H. Cui, “Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation”, Vacuum, Vol.77, pp.57-62 (2004). 49. A. Goux, T. Pauporte, and D. Lincot, “Deposition of mixed zinc oxide/lanthanide films by electrochemical precipitation: The ZnO/Er system”, J. of Electroanalytical Chemistry Vol.587, pp.193-202 (2006). 50. N. Mais, J. P. Reithmaier, and A. Forchel, M. Kohls, L. Spanhel, and G. Mu¨ ller, “Er doped nanocrystalline ZnO planar waveguide structures for 1.55 µm amplifier applications”, Appl. Phys. Lett. Vol.75, No.14, pp.2005-2006 (1999). 51. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, ”1.54 µm emission dynamics of erbium-doped zinc-oxide thin films”, Appl. Phys. Lett. Vol.76, No.26, pp.3935-3937 (2000). 52. X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, and X. W. Fan, “Room-temperature blue luminescence from ZnO:Er thin films”, Thin Solid Films Vol.413, pp.257-261 (2002). 53. B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett. Vol.81, No.4, pp.757-759 (2002). 54. R. S. Wanger and W. C. Ellis, ”Vapor-liquid-solide mechanism of single crystal grown”, Appl. Phys. Lett. Vol.4, No.5, pp.89-50 (1964). 55. C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array”, Appl. Phys. Lett. Vol.84, No.9, pp.1540-1542 (2004) . 56. M. Bouchard and D. C. Smith, ”Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially oncorroded metals and coloured glass”, Spectrochimica Acta Part A, Vol.59, pp.2247-2266(2003). 57. “Raman-Spektroskopie“ Protokoll zu Versuch F12. 58. Khan A. Alim, Vladimir A. Fonoberov, Manu Shamsa, and Alexander A. Balandin, ”Micro-Raman investigation of optical phonons in ZnO nanocrystals”, J. Appl. Phys. Vol.97, No.12, pp.124313-1 - 124313-3(2005). 59. M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, ”Optical phonon confinement in zinc oxide nanoparticles” J. Appl. Phys. Vol.87, No.5, pp.2445-2448 (2000). 60. K. A. Alim, V. A. Fonoberov, and A. A. Balandina, ”Origin of the optical phonon frequency shifts in ZnO quantum dots”, Appl. Phys. Lett. Vol.86, No.5, pp.053103-1 - 053103-3 (2001). 61. A. Balandin, ”Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries”, Balandin, Phys. Low-Dim. Struct. 5/6, pp.73-91 (2000). 62. L. H. He, “Self-strain of solids with spherical nanovoids”, Appl. Phys. Lett. Vol.88, No.15, pp.151909-1 - 151909-3 (2006). 63. J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics. Inc. (1995). 64. M. Ishii, S. Komuro, T. Morikawa, and Y. Aoyagi,” Local structure analysis of an optically active center in Er-doped ZnO thin film”, J. Appl. Phys. Vol.89, No.7 pp.3679-3684 (2001).
|