跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾軍皓
研究生(外文):TZENG, JIUN-HAU
論文名稱:高效能功率因數修正器研製
論文名稱(外文):Study and Implemetation of a High Performance Power Factor Corrector
指導教授:羅有綱
指導教授(外文):Yu-Kang Lo
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:121
中文關鍵詞:高效能功率因數修正器低壓重置功能隨耦升壓功能
外文關鍵詞:High Performance Power Factor CorrectorBrown Out ResetFollower Boost
相關次數:
  • 被引用被引用:39
  • 點閱點閱:735
  • 評分評分:
  • 下載下載:250
  • 收藏至我的研究室書目清單書目收藏:1
本論文旨在研製一高效能功率因數修正器,以升壓型轉換器作為主電力電路架構,使用UC2853控制IC,採用固定切換頻率及平均電流控制模式,以降低輸入電流諧波,並使輸入電流與電壓同相,達到高功率因數的目的。本論文提出兩個新增功能,低壓重置功能(Brown Out Reset,BOR)以及隨耦升壓功能(Follower Boost),以降低切換損失及增加電路穩定可靠性。所提出之創新電路功能以Pspice電路模擬證明其可行性,並實際製作一部500瓦高效能功率因數修正器,以驗證論文中所提之小訊號模型分析與設計考量。
This thesis is focused on the design and implementation of a high-performance power factor corrector (PFC). The presented PFC controlled by a commercial IC UC2853 is operated under the average current mode control with a constant switching frequency to reduce the input current harmonics and to achieve a unity power factor. Two new functions, brown-out reset (BOR) and follower boost, are added to this PFC circuit. With these two optional functions, the switching loss can be reduced and the circuit reliability can be raised. Simulations are performed to verify the feasibility of the presented PFC. A 500-W high-performance PFC is realized to assess the small signal models and design considerations.
第一章 緒論 --------------------------------------------------------- 1
1.1 研究背景 -------------------------------------------------- 1
1.2 研究目的 -------------------------------------------------- 6
1.3 論文內容章節簡述 -------------------------------------- 8
第二章 主動式功率因數修正器簡介 --------------------------- 9
2.1 前言 -------------------------------------------------------- 9
2.2 交流/直流轉換器之系統架構 ------------------------- 12
2.3 電壓控制迴路 -------------------------------------------- 13
2.4 功因修正控制迴路(電流控制迴路) ------------------ 14
2.4.1 磁滯電流控制法 ----------------------------------- 15
2.4.2 連續導通模式峰值電流控制法 ----------------- 15
2.4.3 連續導通模式平均電流控制法 ----------------- 17
2.4.4 不連續導通模式電流控制法 -------------------- 18
第三章 PFC平均電流模式小訊號分析與UC2853結構介紹 -- 20
3.1 前言 -------------------------------------------------------- 20
3.2 迴路介紹 -------------------------------------------------- 21
3.3 電流迴路分析 -------------------------------------------- 23
3.3.1 PWM功率級增益Gid ------------------------------ 24
3.3.2 小訊號調變電路增益Gm ------------------------ 29
3.3.3 常用電流誤差放大器增益GCEA ---------------- 33
3.4 前饋電路分析 -------------------------------------------- 37
3.4.1 未置入前饋電路機制 ----------------------------- 37
3.4.2 置入前饋電路機制 -------------------------------- 40
3.5 電壓迴路分析 -------------------------------------------- 43
3.5.1 控制至輸出轉移函數GVC(s) -------------------- 44
3.5.2 電壓誤差放大器轉移函數GVEA(s) ------------- 48
3.6 UC2853內部方塊圖及各接腳介紹 ----------------- 50
第四章 系統設計流程與模擬分析 --------------------------- 52
4.1 主動式PFC系統UC2853功率級架構設計流程 ---- 52
4.1.1 電感值計算 ----------------------------------------- 53
4.1.2 鐵心材質的選擇 ----------------------------------- 54
4.1.3 繞線線徑的選擇 ----------------------------------- 54
4.1.4 輔助電源設計 -------------------------------------- 55
4.1.5 輸出電容設計 -------------------------------------- 55
4.1.6 功率開關的選擇 ----------------------------------- 56
4.1.7 主二極體的選擇 ----------------------------------- 56
4.1.8 橋式整流器的選擇 -------------------------------- 57
4.1.9 電流檢測電阻的選擇 ----------------------------- 57
4.2 主動式PFC系統UC2853控制電路設計流程 -------- 58
4.2.1 RAC的選擇 --- ------------------------------------- 58
4.2.2 電流迴路補償 -------------------------------------- 58
4.2.2.1 RMO的選擇 ---------------------------------- 58
4.2.2.2電流誤差放大器 --------------------------- 59
4.2.3 電壓迴路補償 -------------------------------------- 64
4.3 新增電路分析設計 ---------------------------------------- 68
4.3.1 低壓重置功能設計 -------------------------------- 68
4.3.2 低壓重置功能電路模擬分析 -------------------- 69
4.3.3 隨耦升壓功能設計 -------------------------------- 74
4.3.4 隨耦升壓功能電路模擬分析 -------------------- 75
第五章 實驗數據及波形 -------------------------------------------- 82
5.1 線電壓頻率為60Hz之實驗波形 ------------------------ 83
5.2 線電壓頻率為50Hz之實驗波形 ------------------------ 94
5.3 輸入頻率為60Hz及50Hz之實驗結果比較 ---------- 104
5.4 隨耦升壓功能及低壓重置功能實驗結果與波形 ---- 104
第六章 結論與未來展望 -------------------------------------------- 115
6-1 結論 ---------------------------------------------------------- 115
6.1.1 低壓重置功能問題討論 -------------------------- 111
6.1.2 隨耦升壓功能問題討論 -------------------------- 117
6-2 未來展望 ---------------------------------------------------- 118
參考文獻 ------------------------------------------------------------- 119
[1]S. Manias, “Novel full bridge semicontrolled switch mode rectifier,” IEE Proc. Electric Power Applicat., vol. 138, no. 5, pp. 252-256, Sept. 1991.
[2]R. Martinez and P. N. Enjeti, “A high-performance single-phase rectifier with input power factor correction,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 311-317, Mar. 1996.
[3]R. I. Deng, and K. Ishizaka, “Single-phase sinusoidal converter using MOSFETs,” IEE Proc. Electric Power Applicat., vol. 136, pt. 13, no. 5, pp. 237-242, Sept. 1989.
[4]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, 3rd Edition, 2003.
[5]S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Ind. Electron., vol. IA-22, no. 6, pp. 1073-1081, 1986.
[6]J. T. Boys, and A. W. Green, “Current-forced single-phase reversible rectifier,” IEE. Proc. Electric Power Applicat., vol. 136, no. 5, pp. 205-211, 1989.
[7]P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. APEC’93, pp. 190-195, 1993.
[8]Y. K. Lo, S. Y. Ou, and H. J. Chiu, “Coupling analysis of a three-phase power factor corrector composed of three single-phase modules,” IEEE Trans. Ind. Electron., vol.48, no.6, pp. 1285-1288, Dec. 2001.
[9]J. S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. APEC’ 93, pp. 267-273, May 1993.
[10]R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 487-499, 1998.
[11]B. P. Divakar, and D. Suanto, “A new boost power factor pre-regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
[12]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applicat., vol. 148, pp. 202-206, 2001.
[13]R. Oruganti, K. Nagaswamy and L. K. Sang, “Predicted (on-time) equal-charge criterion scheme for constant-frequency control of single-phase boost-type AC-DC converters,” IEEE Trans. Power Electron., vol. 13, no. 1, pp. 47-57, Jan. 1998.
[14]C. A. Canesin, and I. Barbi, “Analysis and design of constant-frequency peak-current-controlled high-power-factor boost rectifier with slope compensation,” IEEE Proc. APEC’96, vol. 2, pp. 807-813, 1996.
[15]L. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
[16]R. B. Ridley, “A new, continuous-time model for current-mode control,” Proceedings of the Power Conversion and Intelligence Motion, pp. 455-464, 1989.
[17]V. Vorperian, “Simplified analysis of PWM converters using the model of the PWM switch: parts I and II,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 490-505, May 1990.
[18]C. Zhou, M. M. Jovanovic, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits,” High-Frequency Power Conversion Conference Proceedings, pp. 209-220, 1992.
[19]L. Dixon, “High power factor preregulators for off-line power supplies,” Unitrode Switching regulated power Supply Design Seminar Manual, SEM-700, 1990.
[20]R. B. Ridley, “Average small-signal analysis of the boost power factor correction circuit,” VPEC Seminar Proceedings, pp. 108-120, 1989.
[21]W. Tang, R. Ridley, F. C. Lee, "Small-signal modeling of average current-mode control," VPEC Seminar Proceedings, pp. 193-201, 1991.
[22]W. Tang, F. C. Lee, B. H. Cho, "Small-signal modeling of the single-phase boost high power factor converter with constant frequency control," VPEC Seminar Proceedings, 1992.
[23]P. C. Todd, “Boost power factor corrector design with the uc3853,” Unitrode Application Note U-159.
[24]A. l. Pressman, Switching Power Supply Design, McGraw-Hill, Inc., 1998.
[25]Texas Instruments “Understanding Boost Power Stages in Switch- mode Power Supplies,” Application Report SLVA061
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top