跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.106) 您好!臺灣時間:2022/12/06 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭婉羚
研究生(外文):Wan-ling Cheng
論文名稱:光纖光柵式雙向光信號塞取多工機之研究
論文名稱(外文):Study on Fiber Bragg Gratings-Based Bi-directional Optical Add/Drop Multiplexers
指導教授:廖顯奎
指導教授(外文):Shien-Kuei Liaw
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:光纖光柵雙向光信號塞取多工器
外文關鍵詞:Bi-OADMBi-directional optical add/drop multiplexefiber Bragg grating
相關次數:
  • 被引用被引用:2
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要利用光纖光柵搭配相關光元件,設計出雙向光信號塞取多工器,並分析探討雙向光信號塞取多工器之傳輸特性。首先我們提出若干種雙向光信號塞取多工器之光路架構,並分析各架構之光損失問題。
  至於實作部分,我們設計並量測四種架構之光頻譜及誤碼率,實驗成果如下:雙向光信號塞取多工器架構-1對取出、穿透及塞入信號造成的插入損失分別為4.88 dB、8.24 dB及6.31 dB,在單向傳輸2.5 Gb/s的誤碼率測試實驗下,傳輸25 km之取出端信號功率償付值為0.58 dB,傳輸50 km的穿透端信號之功率償付值為1.6 dB;而在雙向傳輸的測試條件下,取出與穿透信號的功率償付值分別為0.64 dB與1.8 dB。雙向光信號塞取多工器架構-2對取出、穿透及塞入信號造成的插入損失分別為4.58 dB、4.46 dB及4.22 dB,經單向傳輸2.5 Gb/s的誤碼率量測實驗,取出端信號功率償付值為0.36 dB,穿透端信號功率償付值為0.62 dB;在雙向傳輸情況下取出端與穿透端信號之功率償付值分別是0.42 dB與0.76 dB。
  考量到雙向光信號塞取多工器本身元件之插入損失如上述兩個例子,我們也設計出功率補償之雙向光信號塞取多工器,其一為摻鉺光纖光柵式雙向光信號塞取多工器,我們利用載氫技術提高摻鉺光纖光柵的反射率,使其反射率達到98.6 %,而取出、穿透及塞入信號之淨增益則分別為0.96 dB、0.84 dB及0.16 dB,單向2.5 Gb/s的誤碼率測試實驗中,取出端與穿透端信號之功率償付值分別為0.49 dB與0.76 dB;雙向傳輸情況下取出端與穿透端信號之功率償付值則是0.66 dB與1 dB。其二為內建摻鉺光纖之雙向光信號塞取多工器,此架構之取出、穿透及塞入信號之淨增益則分別為4.65 dB、14.27 dB及4.63 dB,在單向2.5 Gb/s誤碼率測試條件下,取出端及穿透端之功率償付值分別為0.41 dB及0.65 dB;雙向傳輸時取出端與穿透端信號之功率償付值則分別為0.53 dB與0.74 dB。最後我們對後續研究提出若干建議。
This thesis mainly focuses on the design of bidirectional optical add/drop multiplexers (Bi-OADMs) based on fiber Bragg gratings (FBGs) and some related optical components. We also analyze their characteristics in lightwave transmission. Firstly, we propose several kinds of Bi-OADMs. The issue of insertion loss in Bi-OADMs is also discussed.
Regarding the experimental part, we measure optical spectra and the bit error rate (BER) performances of four proposed Bi-OADM modules. The results are summary as follows: insertion loss of Bi-OAMD configuration No.1 at the dropped, passed-through and added channels are 4.88-, 8.24- and 6.31 dB, respectively. Under the condition of 25 km transmission, power penalty in the dropped channel is only 0.58 dB; while that in the passed-through channel with 50 Km fiber transmission is 1.6 dB under 2.5 Gb/s BER measurement in unidirectional transmission case. Power penalty at the dropped and passed-through ports are 0.64- and 1.8 dB, respectively, in bidirectional transmission. Insertion losses of Bi-OAMD configuration No.2 at the dropped, passed-through and added channels are 4.58-, 4.46- and 4.42 dB, respectively. Power penalty in the dropped and passed-through channels are 0.36- and 0.62 dB, respectively, under a 2.5 Gb/s BER measurement in unidirectional transmission, while those in the dropped and passed-through channels are 0.42- and 0.76 dB, respectively, in bidirectional transmission.
In the former two examples, insertion loss Bi-OADMs is a big problem, we design two novel configurations of Bi-OADMs have the merit of power compensation. The first one is writing FBG in erbium doped fiber It may enhance the reflectivity of erbium doped-FBG to 98.6 % by using hydrogen loading method, while the net gain at the dropped, passed-through and added ports are 0.96-, 0.84- and 0.16 dB, respectively. Power penalty in the dropped and passed-through channels are 0.49- and 0.76 dB, respectively, in the unidirectional transmission under 2.5 Gb/s BER measurement, while those in the dropped and passed-through channels are 0.66- and 1 dB, respectively, in bidirectional transmission. The second proposal is Bi-OADM integrated erbium doped fiber. Net gains at the dropped, passed-through and added channels are 4.65-, 14.27- and 4.63 dB, respectively. Power penalty in the dropped and passed-through channels are 0.41- and 0.65 dB, respectively, in unidirectional transmission, while those in the dropped and passed-through channels are 0.53- and 0.74 dB, respectively, in bidirectional transmission. Finally, we conclude our achievements in this thesis and suggested future works.
摘要 i
目錄 iii
圖表目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 光信號塞取多工器之簡介 4
2.1 Bi-OADM之重要性 4
2.2 不同元件與材料OADM之比較 5
2.3 光纖光柵製作原理 10
2.4 摻鉺光纖的放大原理 13
第三章 雙向光信號塞取多工器之設計 18
3.1 Bi-OADM關鍵元組件之介紹 18
3.1.1 典型Bi-OADM架構示意 18
3.1.2 光循環器與C/L WDM光耦合器之特性 19
3.2 固定波長之Bi-OADM 23
3.2.1 溫度補償光纖光柵之製作 23
3.2.2 光纖光柵的微調技術 25
3.2.3 固定式Bi-OADM之工作原理與分析 27
3.3 波長可調之Bi-OADM 32
3.3.1 波長可調光纖光柵之製作 32
3.3.2 可調式Bi-OADM之工作原理與分析 33
第四章 雙向光信號塞取多工器之量測 35
4.1 Bi-OADM架構-1 35
4.1.1 光路設計與光頻譜量測 35
4.1.2 BER量測 40
4.2 Bi-OADM架構-2 43
4.2.1 光路設計與光頻譜量測 43
4.2.2 BER量測 48
第五章 具增益之雙向光信號塞取多工器的量測 52
5.1 摻鉺光纖光柵式Bi-OADM 52
5.1.1 摻鉺光纖光柵的製作方法 52
5.1.2 光路架構說明 54
5.1.3 量測結果 55
5.2 內建摻鉺光纖式Bi-OADM 62
5.2.1 光路架構說明 62
5.2.2 量測結果 63
第六章 結論與未來工作 69
6.1 結論 69
6.2 未來展望 71
參考文獻 72
[1]Jeff Hecht, “Understanding Fiber Optics, 4th Ed.”, Prentice Hall, 2002.
[2]V. Viscardi, G. Barozzi, and O. Gerstel, “Asymmetric reconfigurable OADMs for next generation metro-DWDM networks”, OFC’03, Los Angles, CA, USA, vol. 1, TuH3, Feb. 2004.
[3]K. Iwatsuki, Jun-ichi Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies”, IEEE J. Lightw. Technol., vol. 22, no. 11, pp. 2623-2630, Nov. 2004.
[4]S. B. Park, C. H. Lee, S. G. Kang, and S. B. Lee, “Bidirectional WDM self-healing ring network for hub/remote nodes”, IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1657-1659, Nov. 2003.
[5]J. Kim, J. Park, S. Chung, N. Park, B. Lee, and K. Jeong, “Bidirectional wavelength add/drop multiplexer using two separate MUX and DEMUX pairs and reflection-type comb filters”, Opt. Comm., vol. 205, no. 4-6, pp. 321-327, May 2002.
[6]P. C. Peng, H. Y. Cheng, and S. Chi, “Wavelength-tunable add-drop multiplexers using fiber Fabry-Perot tunable filters for bidirectional wavelength-division multiplexing networks”, Optical Engineering, vol. 43, no. 10, pp. 2422-2425, Oct. 2004.
[7]Y. Shen, X. Wu, C. Lu, T. H. Cheng, and M. K. Rao, “A novel single-fiber bidirectional optical add/drop multiplexer for distribution networks”, OFC’01, Anaheim, CA, USA, vol. 3, WY5-1-WY5-3, Mar. 2001.
[8]J. Kim and B. Lee, “Bidirectional wavelength add-drop multiplexer using multiport optical circulators and fiber Bragg gratings”, IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 561-563, May 2000.
[9]曾士原, 黃啟華, 黃榮山, “可動態調配微型多通道光塞取多工器之研究”, 台大工程學刊, 第91期, 第51-63頁, 2004.
[10]王崗嶸, “都會光纖網路發展(下)”, 光連雙月刊, 第37期, 第40-51頁, 2002.
[11]C. Riziotis and M. N. Zervas, “Performance comparison of Bragg grating-based optical add-drop multiplexers in WDM transmission systems”, IEE Proceedings Circuits Devices and Systems, vol. 149, no. 3, pp. 179-186, Jun. 2002.
[12]S. M. Gemelos, D. Wonglumsom, and L. G. Kazovsky, “Impact of crosstalk in an arrayed-waveguide router on an optical add-drop multiplexer”, IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 349-351, Mar. 1999.
[13]Y. Tachikawa, Y. Inoue, M. Ishii, and T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications”, IEEE J. Lightw. Technol., vol. 14, no. 6, pp. 977-983, Jun. 1996.
[14]李雅萍, 陳君萍, 李正中, “光學薄膜於光通訊中被動元件之應用與優勢”, 光訊, 第94期, 第1-6頁, 2002.
[15]C. Riziotis and M. N. Zervas, “Novel full-cycle-coupler-based optical add-drop multiplexer and performance characteristics at 40-Gb/s WDM networks”, IEEE J. Lightw. Technol., vol. 21, no. 8, pp. 1828-1837, Aug. 2003.
[16]C. Riziotis and M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers”, IEEE J. Lightw. Technol., vol. 19, no. 1, pp. 92-104, Jan. 2001.
[17]M. Li, Y. Wu, J. Yang, and H. Qu, “Return loss reduction of integrated grating-assisted optical add/drop multiplexer by control of the reflective spectrum”, IEEE J. Lightw. Technol., vol. 23, no. 3, pp. 1403-1409, Mar. 2005.
[18]張銘宏, “兼具增益之可重構光信號塞取多工器”, 台灣科技大學電子工程研究所碩士論文, 2005.
[19]詹君儀, “以光柵元件設計光信號塞取多工器”, 台灣科技大學電子工程研究所碩士論文, 2003.
[20]Y. C. Lin, J. C. Chiou, W. T. Lin, Y. J. Lin, and S. D. Wu, “The design and assembly of surface-micromachined optical switch for optical add/drop multiplexer application”, IEEE Transactions on Advanced Packaging, vol. 26, no. 3, pp. 261-267, Aug. 2003.
[21]K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview”, IEEE J. Lightw. Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[22]G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg grating in optical fibers by transverse holographic method”, Opt. Lett., vol. 14, no. 15, pp. 823-825, 1989.
[23]陳宣臣, “波長可調光纖光柵之研製與應用”, 台灣科技大學電子工程研究所碩士論文, 2004.
[24]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask”, Appl. Phys. Lett., vol. 62, no. 10, pp. 1035-1037, 1993.
[25]劉學政, “光纖光柵研製及其於光網路模組之應用”, 台灣科技大學電子工程研究所碩士論文, 2002.
[26]L. Chao and L.Reekie, “Grating writing through the fibre coating using a 248 nm excimer laser”,OFC’99, San Diego, CA, USA, vol. 3, pp. 62-64, Feb. 1999.
[27]曾昱璋, “溫度補償及波長可調光柵之研製及其應用”, 台灣科技大學電子工程研究所碩士論文, 2003.
[28]王俊容, “光纖光柵與光循環器組成之光纖雷射:研製與應用”, 台灣科技大學電子工程研究所碩士論文, 2005.
[29]P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers, Fundamentals and Technology”, Academic Press, 1999.
[30]Keigo lizuka, “Elements of photonics volume II”, Wiley-Interscience, 2002.
[31]I. Nusinsky and A. A. Hardy, “Analysis of the Effect of Upconversion on Signal Amplification in Erbium-Doped Fiber Amplifiers (EDFAs)”, IEEE J. Quantum Electron., vol. 39, no. 4, pp. 548-554, Apr. 2003.
[32]廖協虹, “(C+L)-band 摻鉺光纖放大器的研製及應用”, 台灣科技大學電子工程研究所碩士論文, 2004.
[33]G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings”, Appl. Opt., vol. 34, pp. 6859-6861, 1995.
[34]T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, “Temperature compensation technique for fiber Bragg gratings using liquid crystalline polymer tubes”, Electron. Lett., vol. 33, no. 5, pp. 417-419, Feb. 1997.
[35]M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated bending gauge using surface mounted fiber gratings”, Int. J. Optoelectron., vol. 9, pp. 281-283, 1994.
[36]G. W. Yoffe, P. A. Kurg, F. Ouellette, and D. A. Thorncraft, “Temperature compensated optical fiber Bragg gratings”, OFC’95, San Diego, CA, USA, vol. 8, pp. 134-135, Feb. 1995.
[37]林志豪, “以複合材料熱膨脹補償布拉格波長飄移量之探討”, 台灣大學機械工程研究所碩士論文, 2002.
[38]周遊, “光纖布拉格光柵水下聽音器之構型設計”, 中山大學電機工程研究所碩士論文, 2003.
[39]黃立文, “光纖光柵製作與應用(二)”, 光連雙月刊, 第10期, 第23-26頁, 1997.
[40]李劍芝, 姜德生, “載氫與摻鍺石英光纖的光致折射率改變”, 無機材料學報, 第21卷, 第2期, 第345-350頁, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top