跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃隆奇
研究生(外文):Lung-chi Huang
論文名稱:後掠翼之流場與氣動力特性:流場可視化與PIV技術的發展與應用
論文名稱(外文):Flow and Aerodynamic Performance of Back-Swept Wings
指導教授:黃榮芳黃榮芳引用關係
指導教授(外文):Rong-Fung Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:155
中文關鍵詞: 氣動力性能流場可視化後掠翼
外文關鍵詞:Aerodynamic performanceFlow visualizationBack swept wing
相關次數:
  • 被引用被引用:3
  • 點閱點閱:595
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討具有NACA 0012剖面的有限長度後掠懸臂翼之流場與氣動力性能,主要物理參數包括:雷諾數、攻角及後掠角。透過表面油膜流技術觀察機翼升力面之表面流場模態,並輔以煙線流場可視化技術以了解低雷諾速時之流場特徵,再應用質點影像速度儀(Particle Image Velocimetry),取得量化之表面流場結構之全域速度場。並使用六力平衡儀量測後掠翼之氣動力性能。在低雷諾數區域,當後掠角45o時,翼表面之流場行為有五種特徵模態產生,分別為貼附表面流、分離尾流,分離渦旋尾流、翼前緣分離尾流、鈍體尾流模態,在攻角0o時,翼面上之煙線維持平滑地通過上、下翼面,且於翼後緣處相接,隨著攻角增加,層流邊界層在機翼吸力側分離,機翼吸力側及壓力側分離的邊界層形成剪流層不穩定波。攻角持續增加,吸力側所形成之剪流層和從壓力側分離往下游發展的剪流層兩者交亙作用,產生類似Kármán形式的渦旋流逸結構,由於高攻角的關係,使得機翼迎風面尺寸增加,則機翼前緣與後緣之剪流層不穩定波不再具有交互作用,各自形成渦旋流逸的結構。在高雷諾數區域,後掠角30o、38o及45o時,發現七種模態,分別為貼附表面流、層流分離、分離泡、翼前緣分離泡、分離泡延展、分離泡破裂及鈍體尾流,隨著攻角的增加,流體開始從升力面產生分離,而層流邊界層過渡成為紊流邊界層,使其在升力面表面再接觸,而形成分離泡,分離泡隨著攻角的增加往翼前緣前進,且分離泡尺寸隨著前進而縮小,攻角繼續的增加,分離泡尺寸開始增加,最後分離泡破裂消失,且紊流邊界層在升力面產生分離。使用拓樸分析的結果發現與煙線的特徵相似。將六力平衡儀所量測的氣動力特性結果與表面流場比對,發現在機翼升力面之表面流場情形與其氣動力性能有著密切的關係。在後掠角30o、38o及45o時,機翼會在表面流場在當分離泡延展模態時產生偽失速(false stall)的氣動力特性,而當攻角持續增加,當模態進入分離泡破裂時升力則持續上升,直到攻角在30o ~ 35o間才開始失速。在升力與阻力係數的特性方面,直翼的升阻比來的比後掠翼來得高,而後掠翼之最高升阻比處並不如同後掠角在0o、15o一樣,在失速處前具有最高的升阻比,而是在偽失速前具有較高的升阻比,當後掠角大於30o時,較晚發生失速外,後掠翼45o較直翼的最大升力係數約增加了16.4%,但失速阻力係數增加到直翼的4.5倍之多,而力矩係數也是隨著後掠角的增加而往負值增加。最大升阻力係數比原來直翼減少約55%。
Effects of the back-swept angle, chord Renolds number, and root angle-of-attack on the surface flow and the aerodynamic performance of a finite back-swept wing are experimentally studied. The experiments are conducted in a wind tunnel. The cross-sectional profile of the wing model is NACA 0012 and the back-swept angle is varied from 0o to 45o. The aspect ratio of the wing is 5. The surface flow field is visualized by using the techniques of the smoke-wire and surface-oil flow. Five characteristic flow modes are found in low Renolds number regime according to the smoke-streak flow patterns and seven are categorized at high Renolds numbers by observing the patterns of the surface-oil flow. Flow topologies of the surface flow modes in various characteristic flow regimes and the time-dependent wake evolution processes are analyzed by the separatrices, alley ways, and critical points. A six component balance is employed to measure the aerodynamic performance. It is found that the aerodynamic performance of the wing and the surface-oil flow characteristic modes are closely related. When the back-swept angle is great than 30o, the angle of attack at stall would be delayed from 10o~15o of straight wing to 30o~35o of present cases. This may be induced by the increased rotation energy of the secondary flows which are generated by the back swept of the wing when the back-swept angle is greater than 30 o. Because the secondary flows create rotation energy and increase the turbulence intensity, the surface boundary layer thus has ability to resist the negative effect against the adverse pressure occurred at high angle-of-attack. The stall AOA is therefore deferred.
摘要…………………………...………………….…………………… i
Abstract……………………….………………….…………………… iii
誌謝…………………………………………………………………… iv
目錄…………………...……………….……………………………… v
符號索引……………………………...………………………………. viii
表圖索引……………………………………...………………………. x
第一章 緒論………………………………...………………………... 1
1.1 研究動機……………………………………………………... 1
1.2 文獻回顧……………………………...……………………… 2
1.2.1 表面流場與氣動力性能….………………………….. 2
1.2.2 尾流區非穩態流場結構……….…………………….. 3
1.2.3 後掠翼………………….……...……………………... 6
1.3 研究目標……………………………...……………………… 8
第二章 研究構思及實驗設備、儀器與方法………………………… 9
2.1 研究構思..……………………….……..….…………….…… 9
2.2 實驗設備………………………….…………………….……. 10
2.2.1 風洞………………………………………….…….…. 10
2.2.2 機翼模型……………………….…………………..… 12
2.3 實驗儀器及方法…………………………………….……….. 13
2.3.1 自由流速的偵測……………….…………………..… 13
2.3.2 煙線流場可視化……………………………………..… 14
2.3.3 表面油膜流法…………………...……………………….. 16
2.3.4 機翼氣動力性能負荷感測…………….……………. 23
2.3.5 質點影像速度儀(PIV)……….……..………………. 24
第三章 後掠翼的流場特徵……….……………...……….…………. 26
3.1 雷諾數在過渡區之流場…………………………………… 26
3.1.1 流場的特徵模態………………………..…………….. 26
3.1.2 邊界層分離、再接觸及分離泡的行為與特性….…… 29
3.2 低雷諾數之流場………………………………..……………. 30
3.2.1 流場的特徵模態………………………………..…….. 30
3.3.2 速度向量與流線圖…………………………………... 32
3.3.3 渦度分佈………..………....……..……………..…….. 33
3.3.4 流場的特徵模態之拓樸分析…………………..…….. 35
3.3.5 機翼側視流場特徵觀察………………………………. 38
3.3 比較與討論………………………………………………….... 39
第四章 後掠翼的氣動力性能….……………………………..…….. 41
4.1 氣動力性能……….…………………………………..……... 41
4.1.1 升力係數………………..………………………..…….. 42
(1)後掠角Λ=30o…………………….....…. ………… 42
(2)後掠角Λ=38 o……………...……………………... 43
(3)後掠角Λ=45o…………………..…...…. ………… 44
4.1.2 阻力係數…………………..…….………………..……. 45
(1)後掠角Λ=30o…………………….....…. ………… 45
(2)後掠角Λ=38 o……………...……………………... 46
(3)後掠角Λ=45o…………………..…...…. ………… 47
4.1.3 力矩係數…………………..……………………..…….. 48
(1)後掠角Λ=30o…………………….....…. ………… 48
(2)後掠角Λ=38 o……………...……………………... 49
(3)後掠角Λ=45o…………………..…...…. ………… 49
4.1.4 升力與阻力係數的特性....……………………..…….. 50
(1)後掠角Λ=30o…………………….....…. ………… 50
(2)後掠角Λ=38 o……………...……………………... 51
(3)後掠角Λ=45o…………………..…...…. ………… 52
4.2 偽失速與失速攻角之氣動力性能的討論………………..….. 53
4.3 不同後掠角之後掠翼的氣動力性能分析與討論………….... 55
第五章 結論與建議…………….……………………………………. 57
5.1 結論…………………….…………….……………………... 57
5.2 建議…………………….…………….……………………... 59
參考文獻………………………………………………………….…. 60
[1]Carmichael, B. H., “Low Reynolds number airfoil survey,” Vol. 1, NASA CR 165803, 1981.
[2]Crabtree, L. F., “Effect of leading edge separation on thin wings in two-dimensional incompressible flow,” Journal of the Aeronautical Sciences, Vol. 24, No. 8, 1957, pp. 597-604.
[3]Ward, J. R., “The behaviour and effects of laminar separation bubbles on aerofoils in incompressible flow,” Journal of the Royal Aeronautical Society, Vol. 67, Dec. 1963, pp. 783-790.
[4]Arena, A. V. and Mueller, T. J., “Laminar separation, transition, and turbulent reattachment near the leading edge of airfoils,” AIAA Journal, Vol. 18, No. 7, July 1980, pp. 747-753.
[5]Mueller, T. J. and Batill, S. M., “Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers,” AIAA Journal, Vol. 20, No. 4, April 1982, pp. 457-463.
[6]Lissaman, P. B. S., “Low Reynolds numbers airfoils,” Annual Review of Fluid Mechanics, Vol. 15, 1983, pp. 223-239.
[7]O’Meara, M. M. and Mueller, T. J., “Laminar separation bubble characteristics on an airfoil at low Reynolds numbers,” AIAA Journal, Vol. 25, No. 8, Aug. 1987, pp. 1033-1041.
[8]Mueller, T. J., Pohlen, L. J., Conigliaro P. E., and Jansen, B. J., “The influence of free-stream dimensional on low Reynolds number airfoil experiments,” Experiments in Fluids, Vol. 1, 1983, pp. 3-14.
[9]Mueller, T. J., “The influence of laminar separation and transition on the low Reynolds number airfoil hysteresis,” Journal of Aircraft, Vol. 22, No. 9, Sep. 1985, pp. 763-770.
[10]Schewe, G., “Reynolds-number effects in flow around more-or-less bluff bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, 2001, pp. 1267-1289.
[11]Huang, R. F. and Lin, C. L., “Vortex shedding and shear-layer instability of wing at low-Reynolds numbers,” AIAA Journal, Vol. 33, No. 8, Aug. 1995, pp. 1398-1403.
[12]Marris, A. W., “A review on vortex streets, periodic wakes, and induced vibration phenomena,” Journal of Basic Engineering, Vol. 86, June 1964, pp. 185-194.
[13]Berger, E. and Wille, R., “Periodic flow phenomena,” Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 313-340.

[14]Lienhard, J. H., Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletin 300, Washington State University, 1966.
[15]Matsumoto, M., “Vortex shedding of bluff bodies: a review,” Journal of Fluid and Structures, Vol. 13, 1999, pp. 791-811.
[16]Roshko, A., “On the wake and drag of bluff body,” Journal of the Aerospace Science, Vol. 22, 1955, pp. 124-130.
[17]Levi, E., “A universal Strouhal law,” ASCE Journal of Engineering Mechanics, Vol. 107, 1983, pp. 718-727.
[18]Nakamura, Y., “Vortex shedding from bluff bodies and a universal Strouhal number,” Journal of Fluid and Structures, Vol. 10, 1996, pp. 159-171.
[19]Hah, C. and Lakshminarayana, B., “Measurement and prediction of mean velocity and turbulence structure in the near wake of an airfoil,” Journal of Fluid Mechanics, Vol. 115, 1982, pp. 251-282.
[20]Gregory, N., Stuart, J. T., and Walker, W. S., “On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 248, No. 943, July 1955, pp. 155-199.
[21]Sendai, Y. K., “Some expectation on the mechanism of cross-flow instability in a swept wing flow,” Acta Mechanica, Vol. 66, 1987, pp. 21-38.
[22]Subaschandar, N. and Prabhu, A., “Turbulent near-wake studies behind an infinitely swept wing,” Journal of Aircraft, Vol. 39, No. 2, March-April 2002, pp. 290-295.
[23]Poll, D. I. A., “Spiral vortex flow over a swept-back wing,” Aeronautical Journal, Vol. 90, No. 895, May 1986, pp. 185-199.
[24]Zhang, H., Lu, Z. Y., Yuan, H. J., “Flow visualization of swept wing/body junctions,” Journal of Beijing University of Aeronautics and Astronautics, Vol. 26, No. 6, 2000, pp. 684-687.
[25]Patterson, A., Rymarz, P., and Ramaprian, B. R., “Surface pressure measurements on a pitching swept wing in a water channel,” AIAA Journal, Vol. 33, No. 10, Oct. 1995, pp. 1871-1879.
[26]Rymarz, P. and Ramaprian, B. R., “Measurements of velocity and vorticity Fields around a pitching swept wing,” AIAA Journal, Vol. 35, No. 1, 1997, pp.205-207.
[27]Shames, I. H., Mechanics of fluid, 3rd ed., McGraw-Hill, Inc., Singapore, 1992, pp. 632.

[28]
Abbott, I. H. and Von Doenhoff, A. E., Theory of Wing Section, Dover Publications, New York, 1959, pp. 50-53.
[29]Batill, S. M. and Mueller, T. J., “Visualization of transition in the flow over an airfoil using the smoke-wire technique,” AIAA Journal, Vol. 19, No. 3, March 1981, pp. 340-345.
[30]Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 295-307.
[31]Maskell, E. C., “Flow separation in three dimensions,” Royal Aircraft Estabilishment Report 2565, 1955.
[32]Squire, L. C., “The motion of a thin oil sheet under the steady boundary layer on a body,” Journal of Fluid Mechanics, Vol. 11, 1961, pp. 161-179.
[33]Schlichting, H., Boundary Layer theory, 7th ed, McGraw-Hill book company, New York, 1993, pp. 699.
[34]Merzkrich, W., Flow Visualization, Academic press, New York, 1974, pp. 53-56.
[35]Bertin, J. J. and Smith, M. L., Aerodynamics for Engineers, 2nd ed., Prentice Hall, Englewood Cliffs, 1989, pp. 204-213 and pp. 235-257.
[36]Lighthill, M. J., Laminar Boundary Layer, ed. Rosenhead, L., Oxford University, College of Engineer, 1963, pp. 44-88.
[37]Perry, A. E., and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. B, Vol. 18, 1974, pp. 299-315.
[38]Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
[39]Perry, A. E. and Steiner T. R., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 233-270.
[40]Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
[41]Coutanceau, M., and Pineau G., Some Typical Mechanisms in the Early Phase of the Vortex-Shedding Process from Particle-Streak Visualization. Atlas of Visualization III, eds. Nakayama, Y. and Tanida, Y., CRC Press, Boca Raton, 1997, pp. 43-68.

[42] Steiner, T. R. and Perry, A. E., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271-298.
[43]Hoerner, S. F. and Borst, H. V., Fluid Dynamic Lift, Mrs. Liselotte A. Hoerner, Brick Town, New Jersey, 1975, pp. 422-423 and 156-158.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳清山、黃旭鈞(1995)。提升教育品質的一股新動力:談全面品質管理及其在教育上的應用。教育資料與研究,2,74-83。
2. 吳清山(2004)。學校創新經營理念與策略。教師天地,128,30-44。
3. 吳清山(2000)。學校績效責任理念與策略。學校行政,6,3-13。
4. 謝志君、王秀銀(2004)。國際足球總會室內五人制足球(FUTSAL)發展現況之探討。大專體育,70,90-94。
5. 許夙願(1985)。23屆奧運會球類運動員體格探討。中華民國體育學報:7,93-99。
6. 許峰睿(2004)。淺談五人制足球之現況及我國發展五人制足球之契機。學校體育,14-6,77-81。
7. 陳定雄(1991)。足球選手之潛力預測(一)。省體專學報:19,573-587。
8. 陳定雄(1980)。足球運動體能訓練計劃。省體專學報:18,29-36。
9. 陳政雄(1994)。五人制足球裁判法。國民體育季刊;18-4,26-40。
10. 姚東生(1995)。足球運動不同位置球員間體型及體能之比較。華夏學報:29,11788-11811。
11. 洪堂魁(2001)。1999世界盃橄欖球賽球員年齡、身高、體重之分析。中華體育季刊,59,60-68。
12. 潘慧玲(1999)。學校效能研究領域的發展。教育研究集刊,43,77-102。
13. 楊思偉(2000)。日本臨教審後的教育改革評析,教育研究資訊,8(1), 24-37 。
14. 蓋浙生(1995)。政府遷台後教育政策的分析與檢討。教育資料文摘,36(1),
15. 葉郁菁 (2003)。教育優先、技能第一,英國2001~2006教育改的發展方向。教育資料與研究,54,47-53。