|
1.K. A. Gruss, C. L. Brown and M. W. Hodges, “U. S. Nuclear Regulatory Commission Acceptance Criteria and Cladding Considerations for the Dry Storage and Transportation of Spent Fuel,” Proceedings of TopFuel 2003, Würzburg Germany, March 16-19 2003. 2.W. Goll, A. C. Leger and K. McCoy, “Spent Fuel Behavior under Dry Storage Conditions,” ibid. 3.R. Limon, C. Cappelaere, T. Bredel and P. Bouffioux, “A Formulation of the Spent Fuel Cladding Creep Behaviour for Long Term Storage,” Proceedings of the 2000 International Topical Meeting on Light Water Reactor Fuel Performance, Park City, Utah, USA, April 10-13, 2000. 4. R L. Yang, “Meeting The Challenge of Managing Nuclear Fuel in a competitive environment,” Proc. of International Topical Meeting on LWR Fuel Performance, Porland, Oregon(1997). 5. S.-Q. Shi, “Diffusion-controlled hydride growth near crack tip in Zirconium under temperature transients,” J. Nucl. Mat. 275, pp.318-323(1999). 6. Young Suk Kim, “Precipitation of reoriented hydrides and textural change of -Zirconium grains during delayed hydride cracking of Zr-2.5% Nb pressure tube,” J. Nucl. Mat.297, pp.292-302(2001). 7. H. S. Rosenbaun, J. H. Davies and J.Q. Don, “Interaction of Iodine with Zircaloy-2,” Geap-51005(1966). 8. C. J. Simpson and C. E. Ells, “Delayed Hydrogen Embrittlement in Zr-2.5%,” J. Nucl. Mat. 52, pp.289-295(1974). 9. C. E. Coleman and J. F. R. Ambler, “Delayed Hydrogen Cracking in Zr-2.5% Nb Alloy,” Rev. Coating and Corrosion 3:105(1979). 10. S.-Q. Shi, ”Diffusion-Controlled Hydride Growth Near Crack Tip in Zirconium under Temperature Transients,” J. Nucl. Mat. 275, pp.318-323(1999). 11. D. R. Metzger, Ontario Hydro Technologies Report, No.91-102K, (1991). 12. J. Lufrano, P. Sofronis, H.K. Birnbaun, J. Mech. 19 (1984). 13. Y. S. Kim, Y. Perlovich, “precipitation of reoriented hydrides and textural change of -Zirconium grains during DHC of Zr-2.5% Nb pressure tube,” J. Nucl. Mat. 297, pp.292-302 (2001). 14. M. Kuroda, S. Yamanaka, D. Setoyama, “Tensile test of hydrided Zircaloy,” J. Nucl. Mat. 330-332 (2002) 404-407. 15. M. Kuroda, S. Yamanaka, F. Nagase, H. Uetsuka, Nucl. Eng. Des. 203 (2001) 185. 16. M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase, H. Uetsuka, J. Nucl. Sci. Technol 37 (2000) 670. 17. S. Yamanaka, M. Kuroda, D. Setoyama, “Analysis of The Fracture Behavior of Hydrided Cladding Tube at Elevated Temperature by Fracture Mechanics,” J. Nucl. Mat. 330-332 (2002) 400-403. 18. M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase, H. Uetsuka, J. Nucl. Sci. Technol 37 (2000) 670. 19. M. Kuroda, S. Yamanaka, F. Nagase, H. Uetsuka, Nucl. Eng. Des. 203 (2001) 185. 20. A. Tasooji, et.al., “Modeling of Zircaloy Stress-Corrosion Cracking: Texture Effect and Dry Storage Spent Fuel Behavior,” American Society for Testing and Material, pp.595-626 (1984). 21. “Cladding Consideration for the Transportation and Storage of Spent fuel,“ Interim Staff Guideance-11, Revision 3, Spent Fuel Project Office, Nuclear Regulatory Commission, November 17, 2003.
|