跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳錦坤
研究生(外文):Chin-kun Chen
論文名稱:用過核燃料護套中期貯存潛變劣化機制分析
論文名稱(外文):Degradation Mechanism Analysis on Spent Fuel Zircaloy Cladding in Interim Storage
指導教授:趙振綱
指導教授(外文):Ching-Kong Chao
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞: J積分 C*積分應變能密度因子 潛變核燃料護套
外文關鍵詞:J-integralC*-integralstrain energy density factorcreepZircaloy cladding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
用過核燃料棒鋯合金護套之潛變破壞行為是進行乾式中期貯存期間的劣化機制之ㄧ,本文以C*積分能量的觀點探討燃料護套在乾式中期貯存期間受到潛變影響下,討論不同氫化鋯方位、初始裂縫長度和中期貯存期間的溫度變化對護套的影響,最後評估何種條件下在中期貯存期間是最容易造成護套破壞的原因。
由本文結果發現,護套在乾式中期貯存的環境下,初始裂縫長度與溫度效應是扮演最重要的角色,而中期貯存前是否已析出氫化鋯及其方位重排對中期貯存的條件下並非是重要影響因素,由分析結果可知護套存有雙裂縫的狀況下,裂縫穿透護套的時間最快速;若貯存溫度保持恆溫時,護套大部分皆能安全貯存,除了雙裂縫狀況下且裂縫長度達最大裂縫長度以上才會破壞。所以只要控制貯存溫度上升曲率能越緩和或是保持恆溫時,就能確保護套在中期貯存時間內是安全的,不會有裂縫貫穿護套厚度的情形。
由本文之結果可預測護套在中期貯存期間潛變機制影響下其溫度與裂縫成長的關係,且可作為日後評估貯存護套壽命的依據外,也有助於鋯合金護套於中期貯存期間的完整性評估。
The Zircaloy cladding creep rupture is one of the degradation mechanisms for spent fuel in interim dry storage. According to the latest version of ISG-11, the author used the C*-Integral energy method applied in the analysis of creep effect for spent fuel cladding in interim dry storage, and discussed the different effects of hydride orientations, initial crack lengths and storage temperature on cladding failure in this paper. Finally, the result will estimate which kind of environment and storage conditions are most likely to cause degradation leading to cladding failure in the interim dry storage.
In summary, it was found that the initial crack length and the temperature curve effects played an important role in the interim dry storage, but the hydrogen content and the hydride orientation are irrelevant. The results showed that the cladding with double cracks will cause the fastest penetration through any given thickness of cladding. If the storage temperature is kept at 400℃, the cladding can be preserved safely except when the initial length of the double cracks is longer than the maximum length. When the storage temperature rises slowly or remains at a constant temperature of 400℃, it will be safe for the cladding which stores in the interim dry storage.
This study has established the relationship between the temperature and the crack growth in the interim dry storage. This paper also contains a reliable cladding integrity evaluation for spent fuel in the interim dry storage.
中文摘要 ………………………………………………………………Ⅰ
英文摘要 ………………………………………………………………Ⅱ
誌謝 ……………………………………………………………………Ⅲ
目錄 ……………………………………………………………………Ⅳ
圖索引 …………………………………………………………………Ⅵ
表索引 …………………………………………………………………Ⅹ
第一章 緒論 ……………………………………………………………1
1.1 研究動機與目的 ……………………………………………1
1.2 文獻回顧 ……………………………………………………3
1.3 本文架構 ……………………………………………………4
第二章 理論基礎 ………………………………………………………6
2.1 J積分 ………………………………………………………6
2.2 C*積分 ………………………………………………………7
2.3 應變能密度理論 ……………………………………………9
第三章 中期貯存潛變分析 …………………………………………16
3.1 潛變現象的產生與模型 …………………………………16
3.2 氫化現象產生與有限元素模型 …………………………18
第四章 結果與討論 …………………………………………………33
4.1 有限元素分析結果 ………………………………………33
4.2 初始裂縫長度之探討 ……………………………………34
4.3 裂縫尖端析出氫化鋯排列方位之探討 …………………38
4.4 溫度曲線之安全性評估 …………………………………39
第五章 結論與建議 …………………………………………………71
5.1 結論 ………………………………………………………71
5.2 未來研究方向 ……………………………………………73
參考文獻 ………………………………………………………………75
作者簡介 ………………………………………………………………78
1. E. William Brach, Director, “Cladding Considerations for the Transportation and Storage of Spent Fuel,” Interim Staff Guidance – 11, Revision 3, Spent Fuel Project Office, Nuclear Regulatory Commission, November 17, 2003.
2. J. L. Bassani and F. A. McClintock, “Creep Relaxation of Stress Around a Crack Tip,” Int. J. Solids Structures, Vol. 17, pp. 479-492, 1981.
3. H. Riedel, “Creep Deformation at Crack Tips In Elastic-Viscoplatic Solids,” J. Mech. Phys. Solids, Vol. 29, pp.35-49, 1981.
4. H. S. Rosenbaun, J. H. Davies and J. Q. Don, Interaction of Iodine with Zircaloy-2, Geap-51005, 1966.
5. H. S. Rosenbaun, “The Interaction of Iodine with Zircaloy-2,” Electrochem. Tech., Vol. 4, pp. 153-156, 1966.
6. R. Dutton, et.al., “ Mechanisms of Hydrogen Induced Delayed Cracking in Hydride Forming Materials,” Metallurgical Transactions A (Physical Metallurgy and Materials Science), v A8, pp. 1553-1562, 1977.
7. C. J. SIMPSON and C. E. Ells, “Delayed hydrogen embrittlement in Zr-2.5 wt % Nb,” Journal of Nuclear Materials, 52, pp. 289-295, 1974.
8. C. E. Coleman and J. F. R. Ambler, “Delayed Hydrogen Cracking in Zr-2.5 wt% Nb Alloy,” Rev. Coating and Corrosion 3:105, 1979.
9. N. E. Hoppe, ”Engineering Model for Zircaloy Creep and Growth,” Advanced Nuclear Fuels Corporation, Richland, Washinfton, U.S.A.
10. Mayazumi Masami, Onchi Takeo, Matsuo, Yutaka, “Failure propensities of pressurized zircaloy tube containing iodine and other chemical species,” Journal of Nuclear Science and Technology, Vol. 12, pp. 1288-1298, 1993.
11. Limback, M. and Andersson, T., “A Model for Analysis of the Effect of Final Annealing on the In- and Out-of-Reactor Creep Behavior of Zircaloy Cladding,” Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E. R. Bradley and G. P. Sabol, Eds., American Society for Testing and Materials, pp. 448-468, 1996.
12. Fumihisisa Nagase and Toyoshi Fuketa, “Influence of Hydride Re-orientation on BWR Cladding Rupture under Accidental Conditions,” Journal of Nuclear Science and Technology, Vol. 41, No. 12, pp.1211-1217, 2004.
13. S. I. Hong, K. W. Lee, K. T. Kim, “Effect of the circumferential hydrides on the deformation and fracture of Zircaloy cladding tubes,” Journal of Nuclear Materials, 303, pp.169-176, 2002.
14. J. D. Eshelby, “Calculation of Energy Release Rate,” Prospects of Fracture Mechanics, pp. 69-84, Sih, Van Elst, Broek, Ed., Noordhoof, 1974.
15. G. P. Cherepanov, “Crack Propagation in Continuous Media,” USSR, J. Appl. Math. And Mech. Translation 31, pp. 504, 1967.
16. J. R. Rice, “ A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notchrs and Cracks,” J. Appl. Mech., pp. 379-386, 1968.
17. J. W. Hutchinson, “ Singular Behavior at th End of a Tensile Crack Tip in a Hardening Material,” J. of the Mechanics and Physics of Solids, Vol. 16, pp. 13-31,1968.
18. J. R. Rice and G. F. Rosengren, “Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material,” J. of the Mechanics and Physics of Solids, Vol. 16, pp. 1-12, 1968.
19. J. D. Landes and J. A. Begley, “A Fracture Mechanics Approach to Creep Crack Growth,” ASTM STP, 590, American Society for Testing and Materials, Philadelphia, pp. 128-148, 1976.
20. K. M. Nikbin, G. A. Webster and C. E. Turner, ASTM STP 601, American Society for Testing and Materials, Philadelphia, pp. 47-62, 1976.
21. E. Beltrami, Aslle Condizioni di Resistenza dei corpi Elastic, Rendiconto del Reale Istituto Lombardo, Ser. II, Tomo XVIII, 1985.
22. G. C. Sih, “Some Basic Problems in Fracture Mechanics and New Concepts,” J. Energ. Fracture. Mech., Vol.5, pp. 365-377, 1973.
23. C. K. Chao and Che-Chung Tseng, “Pellet crack mechanism at power ramps,” J. Nucl. Mater., Vol. 199, pp. 159-166, 1993.
24. 曾哲聰, “應變能密度理論於核燃料破損分析之應用,” 國立台灣工業技術學院機械系博士論文, 1992。
25. Young Suk Kim, “Generalized creep model of Zircaloy-4 cladding tubes,” Journal of Nuclear Materials, 250, pp. 164-170, 1997.
26. K. Wasmer, K. M. Nikbin, G. A. Webster, “Creep crack initiation and growth in thick section steel pipes under internal pressure,” International Journal of Pressure Vessels and Piping, 80, pp. 489-498, 2003.
27. A. Tasooji, et.al., “Modeling of zircaloy Stress-Corrosion Cracking: Texture Effect and Dry Storage Spent Fuel Behavior,” American Society for Testing and Material, pp. 595-626, 1984.
28. Masatoshi Kuroda, Shinsuke Yamanaka, Fumihisa Nagase, Hiroshi Uetsuka, ”Analysis of the fracture behavior of hydrided fuel cladding by fracture mechanics,” Nuclear Engineering and Design, 203, pp. 185-194, 2001.
29. R. N. Singh, Niraj Kumar, R. Kishore, S. Roychaudhury, T. K. Sinha, B. P. Kashyap, “Delayed hydride cracking in Zr-2.5Nb pressure tube material,” Journal of Nuclear Materials, 304, pp. 189-203, 2002.
30. Roger Limon and Sylvie Lehmann, “A creep rupture criterion for Zircaloy-4 fuel cladding under internal pressure,” Journal of Nuclear Materials, 335, pp. 322-334, 2004.
31. FERNANDO C. M. MENANDRO, E. T. MOYER, JR and H. LIEBOWTIZ, “A NEAR OPTIMAL CRACK TIP MESH,” Engineering Fracture Mechanics, Vol. 50, No. 5/6, pp. 703-711, 1995.
32. FERNANDO C. M. MENANDRO, E. T. MOYER, JR and H. LIEBOWTIZ, “A METHODOLOGY FOR CRACK TIP MESH DESIGN,” Engineering Fracture Mechanics, Vol. 50, No. 5/6, pp. 713-726, 1995.
33. Cheol Nam, Byoung-Kwon Choi, Myung-Ho Lee, Yong-Hwan Jeong, “Creep strength of Zircaloy-4 cladding depending on applied stress and annealing temperature,” Journal of Nuclear Materials, 305, pp. 70-76, 2002.
34. R. N. Singh and C. V. Ramakrishnan, “Fracture Behavior of Creeping Materials Under Biaxial Loading by Finite Element Method,” Engineering Fracture Mechanics, Vol. 51, No. 4, pp. 637-648, 1995.
35. S. Murakami, Y. Liu, M. Mizuno, “Computational methods for creep fracture analysis by damage mechanics,” Comput. Methods Appl. Mech. Engrg., 183, pp.15-33, 2000.
36. KOICHI YAGI, MASAAKI TABUCHI and KIYOSHI KUBO, “THE INFLUENCE OF FRACTURE MECHANISMS ON THE CREEP CRACK GROWTH BEHAVIOR OF 316 STAINLESS STEEL,” Engineering Fracture Mechanics, Vol. 57, No. 5, pp. 463-473, 1997.
37. Kwon, K.M. Nikbin, G.A. Webster, K.V. Jata, “Crack growth in the presence of limited creep deformation,” Engineering Fracture Mechanics, Vol. 62, pp. 33-46, 1999.
38. Rui Wu, Rolf Sandstrom, Facredin Seitisleam, “Low temperature creep crack growth in low alloy reactor pressure vessel steel,“ Journal of Nuclear Materials, Vol. 336, pp. 279–290, 2005.
39. 胡志允, “核燃料棒鋯合金護套裂縫延遲氫化龜裂分析,” 台灣科技大學機械工程系碩士論文, 1998。
40. 周永芳, “鋯合金在潛變與應力腐蝕破壞機制下裂縫成長分析模式之建立,” 台灣科技大學機械工程系碩士論文, 1999。
41. Sponsored by The Metals Properties Council, “CREEP OF ZIRCONIUM ALLOYS IN NUCLEAR REACTORS,” .
42. H. E. EVANS, “MECHANISMS OF CREEP FRACTURE,”.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top