跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 11:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志榮
研究生(外文):Chin-jung Huang
論文名稱:硫含量對A992、SN490B及SN490C結構用鋼之機械性質影響
論文名稱(外文):The Effect of Sulfur Content on Mechanical Properties for A992、SN490B and SN490C Construction Steels
指導教授:蔡顯榮蔡顯榮引用關係
指導教授(外文):Hsien-lung Tsai
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:112
中文關鍵詞:A992SN490BSN490C結構用鋼硫含量
外文關鍵詞:SN490CConstruction SteelsA992、SN490B
相關次數:
  • 被引用被引用:7
  • 點閱點閱:856
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究美國A992耐震鋼材與SN490系列日本耐震鋼材,硫含量對於其鋼板厚度方向之抗拉強度、延展性、衝擊韌性等機械性質及材料微觀及巨觀組織之影響。
實驗結果顯示,SN490系列鋼板之厚度方向不論是抗拉強度、延展性、衝擊韌性等機械性質,皆比A992系列強韌。在微觀分析方面,板厚較小者,晶粒結構較細緻。在破斷面分析方向,SN490系列由於硫含量等介在物較少,故破斷面型態常以韌性破壞出現,A992系列破斷面面積約60%以脆性或劈裂型態出現。
The effect of sulfur content on mechanical properties including tensile strength, ductility, impact toughness and microstructure for A992, SN490B and SN490C construction steels was studied.

As a result, SN490B and SN490C are strengthener than A992 for mechanical properties. All the thickness of steel plates decrease in impact toughness because of sulfide. In the fracture areas specimens, characteristic ductile fracture with large dimples is the dominant mode of fracture in SN490B and SN490C because of less sulfide, but cleavage and brittleness mode in A992.
中文摘要...........................................................................Ⅰ
英文摘要...........................................................................Ⅱ
致謝.........................................................................Ⅲ
目錄.........................................................................Ⅴ
表索引.......................................................................Ⅶ
圖索引.......................................................................Ⅷ
第一章、前言............................................................................1
第二章、文獻回顧............................................................................5
2.1 電爐之特性...........................................................5
2.2 熱機處理之特徵.......................................................6
2.3 軋延製品之品質性.....................................................7
2.4 結構用鋼之規範.......................................................8
2.5 潛伏銲及樑柱接頭處複合銲道對柱板材質之影響...........................9
第三章、實驗方法...........................................................................15
3.1 A992鋼板材質統計分析及測試對象決定..................................15
3.2 母材................................................................17
3.3 實驗流程............................................................17
3.4 分光儀試驗..........................................................18
3.5 母材壓延方向之機械性質試驗..........................................18
3.6 母材板厚方向之機械試驗..............................................19
3.7 顯微組織觀察........................................................19
第四章、結果與討論...........................................................31
4.1 硫含量在鋼板分布之情形...............................................31
4.2 顯微組織觀察.........................................................32
4.3 拉伸性質.............................................................33
4.4 衝擊韌性性質.........................................................35
4.5 SEM破斷面分析........................................................37
第五章、結論.................................................................61
第六章、未來研究方向.........................................................64
參考文獻...........................................................................65
附錄一.......................................................................68
附錄二.......................................................................83
附錄三.......................................................................85
附錄四.......................................................................96
作者簡介....................................................................112
[1]張敬昌, 謝紹松, 王正雄, 莊憲正 “從建築結構設計的角度談鋼板規格的訂定”結構 工程第二十卷第一期,2005 pp31-58.
[2] Robert J. Dexter, P.E, M.ASCE;Paul M. Bergson ; Sara D. Ojard ; and Mark D. Graeser, “Ductility and Strength Requirements for Base Metal in Welded T-Joint”, Journal Materials in Civil Engineering, January, 2002 p35~p43
[3] Federal Emergency Management Agency, State of Art Report on Welding and Inspection, program to reduce the Earthquake Hazards of Steel Moment-Frame structures, FEMA-3558, September, 2000
[4]Serope Kalpakjian, Manufacturing Engineering and Technology, Addison-Wesley Publishing Company, 1998[5] Nestor Iwankiw,Sergio Zoruba, “Steel moment frames: resolution of recent seismic detailing and material shape issues”, Journal of Constructional steel Research 58(2002) 495~510
[6] D.bika, J.A.Pfaendtner, M.Menyhard and C.J.Mcmahon.JR, “Sulfur-induced Dynamic Embrittlement in A Low-Alloy Steel”
[7] Donald R. Akeland, “The Science and Engineering of Materuals”, International Thomson Publishing
[8] R W K Honeycombe, “Steels-Microstructure and Properties”, Edward Arnold, 1981
[9]中國鑛冶工程學會 “鋼鐵冶金學Ⅲ.煉鋼技術”,民國75年9月出版
[10] George E. Dieter, David Bacon, Mechanical metallurgy, McGraw-Hill Book Company, 1988
[11] Justin Ocel, M.ASCE, Reginald DesRoches, M.ASCE, Roberto T.Leon, M.ASCE, W. Gregory Hess, Robert Krumme, Jack R. Hayes, and Steve Sweeney, “Steel Beam-column Connections Using Shape Memory Alloys”, Journal of Structural Engineering ,ASCE, May (2004), 732-740
[12] Piotr D. Moncarz, Brian M. McDonald, Pobert D. Caligiuru, “Earthquake failure of welded building connections”, International Journal of Solid and Structures, 38,(2001) 2025-2032
[13] H.K.Lee, K.S.Kim, C.M.Kim, “Fracture resistance of a steel weld joint under fatigue loading”, Engineering Fracture Mechanics 66(2000), 403-419
[14] Robert J.Dexter, P.E, Member, ASCE, and Minerva I. Melendrez, “Through-thickness Properties of Column Flanges in Welded Moment Connection”, Journal of Structural Engineering, January 2000 24-31
[15] Jukka Martikainen, “Conditions for achieving high-quality welds in the plasma-arc keyhole weld of structural steels”, Journal of Materials Processing Technology 52 (1995) 68-75
[16] P. Hausild, C. Berdin, P. Bompard, “Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range”, Materials Science and Engineering A391(2005) 188-197
[17] J. Vojvodic Tuma, “Properties and fracture of structural steels with yield stress of 373-737 MPain ambient to nil ductility temperature range”, Journal of Materials Processing Technology 121 (2002) 323-331

[18] A. Rossoll, C. Berdin and C. Prioul, “Determination of Fracture Toughness of a low steel by the instrumented Charpy Impact Test”, International Journal of Fracture, 115 (2002) 205-226
[19] John Nikolaou, George D. Papadimitriou, “Impact toughness of reinforcing steels produced by (1) the Tempcore process and (2) microalloying with vanadium”, International Journal of Impact Engineering 31 (2005) 1065-1080
[20] B. Tanguy, J. Besson, R. Pineau, “Ductile to brittle transition of A508 steel characterized by Charpy impact results”, Engineering Fracture Mechanic 72 (2005) 49-72
[21] M. Mantyla, A. Rossoll, I. Nedbal, C. Prioul,B. Marini, “Fractographic observations of cleavage fracture initiation in a bainitic A508 steel”, Journal of Nuclear Material 264 (1999) 257-262
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top