1. 林昇佃、余子隆、張幼珍、翁芳柏、李碩仁、林育才、吳和生、魏榮宗、林修正、賴子珍、曾盛恕、詹世弘,燃料電池:新世紀能源,滄海圖書,台中,民國93年3月。
2. 韓敏芳、彭蘇萍,固態氧化物燃料電池材料及製備,科學出版社,北京,2004年2月。
3. 本間琢也,圖解燃料電池百科,全華科技圖書股份有限公司,台北,2004年11月。
4. 溫武義,燃料電池技術,全華科技圖書股份有限公司,台北,93年8月。
5. A. Boudghene Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy”, Energy Reviews, v 6, n 5, October, (2002) P 433-455.
6. D. J. Garvie, R. H. J. Hannink, and M. V. Swain, in:“Transformation Toughening of Ceramic”, CRC Press, Inc. (1989) P 41.
7. R. C. Garvie, “Zirconia Dioxide and Some of Its Binary System”, in “High Temperature Oxides”, Vol.5, Ed. By A. M. Alper, Academic Press, New York, (1970) Chap. 4.
8. H. Itoh, Y. Hiei, T. Yamamoto, M. Mori, and T. Watanable, “Optimized Mixture Ratio in YSZ-Supported Ni-YSZ Aonde Material for SOFC”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, P 750-758.
9. S. Linderoth, P. V. Hendriksen, M. Mogensen, and N. Langvad, “Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks”, J. Mater. Sci., (1996) 31, P 5077-5082.
10. 松島敏雄: 電學論B, Vol. 115-B, No. 5, (1995) P 532-537.
11. A. A. Khanlou, F. Tietz, I. C. Vinke, and D. Stöver, “Elwctrochemical and Microstructural Study of SOFC Cathode Based on La0.65Sr0.3MnO3 and Pr0.65Sr0.3MnO3”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, P 476-484.
12. Y. Ohno, S. Nagata, and H. Sato; “Properites of Oxiders for High Temperature Solid Electroltye Fuel Cell”, Solid Satae Ionics, Vol. 9&10, P 1001-1007.
13. N. Q. Minh and T. Takehikp, Elsevier, New York, 136-137 (1995).
14. J. Santen and G. Jonker, Physica XVI, No. 7-3, 599-560 (1950).
15. J. Li, Q. Huang, Z. W. Li, L. P. You, S. Y. Xu, and C. K. Ong, “Enhanced Magnetoresistance in Ag-Doped Granular La2/3Sr1/3MnO3 Thin Films Prepared by Dual-Beam Pulsed-Laser Deposition”, J. Appl. Physi., 89[6], 7428-7430 (2001).
16. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent topics on oxide ion conductors”, Electrochemistry, v 69, n 10, October, 2001, p 797.
17. J. M. Ralph, A. C. Schoeler, and M. Krumpelt, ”Materials for lower temperature solid oxide fuel cells”, Journal of Materials Science, v 36, n 5, Mar1, (2001) p 1161-1172.
18. S. P. S. Badwal, “Stability of solid oxide fuel cell components”, Solid State Ion. 143 (2001) P 39.
19. N. Birks and G. H. Meier, in: “Introduction to High Temperature Oxidation of Metals,” Edward Arnold, London, (1983) P 34-41.
20. 李美栓,金屬的氧化物,冶金工業出版社,北京,2001年,11月。
21. N. Sakai, T. Kawada, H. Yokokawa, M.Dokiya, M. Mori, and T. Iwata, “Structure and polarization characteristics of solid oxide fuel cell anodes”, Solid State Ionics, v 40-41, n Pt1, Aug, 1990, p 402-406.
22. N. Q. Minh. J. Am. Ceram. Soc. 76 (1993) P 563.
23. R. A. De Souza and J. A. Kilner. “Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites. Part II. Oxygen surface exchange”, Solid State Ionics, 126, 153-162 (1999).
24. W. J. Quadakkers, H. Greiner, and W. Kock, in: U. Bossel (Ed.), Proceedings of the First European SOFC Forum, Lucerne, Switzerland, 1994, p.525.
25. W. J. Quadakker, H. Greiner, M. Hansel, A. Pattanaik, A. S. Khanna, and W. Mallener. “Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs”, Solid State Ionics 91 (1996) 55-67.
26. D. M. Englamd and A. V. Virkar, “Oxidation Kinetics of Some Nickel-Based Superalloy Foils and Electronic Resistance of the Oxide Scale Formed in Air Part I”, J. Electrochem. Soc. 146 (1999) 3196-3202.
27. A. V. Virkar and J. W. Kim, “Planar solid oxide fuel cell with metallic foil interconnect”, US Pat. 6106967.
28. S. J. Geng, J. H. Zhu, and Z. G. Lu, “Evaluation of Haynes 242 alloy as SOFC interconnect material”, Solid State Ionics 177 (2006) P 559-568.
29. Li Jian, Pu Jian, Xiao Jianzhong, and Qian Xiaoliang. “Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments”, Journal of Power Sources. V 139, n 1-2, Jan 4, 2005, P 182-187.
30. Fuel Cell Handbook, The US Department of Energy, 2002.
31. E. I. Tiffee, W. Weising, M. Janousek, W. M. Schiessl, and H. Greiner, “Ceramic and metallic components for a planar SOFC”, Ber. Bunsenges Phys. Chem. V 94 (1990) 978-983.
32. B. E. Liebert. “Electrical characterization of a chromium alloy interconnect material”, in: B. Thorstensen (Ed.), Proceedings of the Sixth Interantional Symposium on Solid Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17-22 October (1999) P 722-730.
33. W. Z. Zhu and S. C. Deevi. “Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance”, Materials Research Bulletin 38 (2003) P 957-972.
34. D. Mayer, W. W. Smeltzer, J. D. Mackenzic, and C. E. Birchenall, Corrosion, 109 (1961).
35. M. Lambertin, A. Stoklosa, and W. W. Smeltzer, “OXIDATION PROPERTIES OF Fe-5Cr-4Al (wt. %) ALLOYS IN OXYGEN AT TEMPERATURES 1000 degree C-1320 degree C”, Oxid. Met., Vol. 15, (1981) 355.
36. E. A. Loria, Mte. Trans. A, 11A 537 (1980).
37. T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, “Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell”, Solid State Ionics 143(2001) 131.
38. H. Kurokawa, k. Kawamura, and T. Maruyama, “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168(2004) 13.
39. Hideto Kurokawa, Kenichi Kawamura, and Toshio Maruyama. “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168 (2004) 13-21.
40. M. G. E. Cox, B. Mcenanay, and V. D. Scott, “CHEMICAL DIFFUSION MODEL FOR PARTITIONING OF TRANSITION ELEMENTS IN OXIDE SCALES ON ALLOYS”, Philia. Mag. 26 (1972) 839-851.
41. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, “Diffusion of cations in chromia layers grown on iron-base alloys”, Oxide. Met. 37 (1992) P 81-93.
42. R.K. Wild. “High Temoerature Oxidation of Austenitic Stainless Steel in Low Oxygen Pressure”, Corros. Sci. 17 (1977) 87.
43. I. Barin. “Thermochemical Data of Pure Substances”, 3rd edition, VCH Verlagsgesellschaft, Weinheim, 1995.
44. K. Q. Huang, P. Y. Hou, and J. B. Goodenough. “Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells”, Solid State Ionics 129 (2000) P 237-250.
45. I. Antepara, I. Villarreal, L. M. Rodriguez-Martinez, N. Lecanda, U. Castro, and A. Laresgoiti. “Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs”, Journal of Power Sources 151 (2005) 103–107.
46. J. H. Zhua, Y. Zhanga, A. Basua, Z. G. Lua, M. Paranthamanb, D. F. Leec, and E. A. Payzantc. Surface and Coatings Technology 177 –178 (2004) 65–72.
47. T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumi, and T. Maaruyama, Solid State Ionics 67 (1993) 25.
48. Y. D. Zhen, S. P. Jiang, and S. Zhang, “Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells”, Vincent Tan. Journal of the European Society 25 (2005) 747-758.
49. H. W. Nie, T.-L. Wen, and H. Y. Tu. Materials Research Bulletin 38 (2003) 1531-1536.
50. A. V. Virkar and D. M. England, Solid State Fuel Cell Interconnector, United States Patent 6,054,231 (25 April 2000).
51. G. V. Samsonov, The Oxide Handbook, IFI Plenum, New York,1973.
52. Jong-Hee Kima, Rak-Hyun Songa, and Sang-Hoon Hyunb, “Effect of slurry-coated LaSrMnO3 on the electrical property of Fe–Cr alloy for metallic interconnect of SOFC”, Solid State Ionics. 174 (2004) 185–191.
53. E. Batawi, W. Glatz, W. Kraussler, and M. Janousek, “Oxidation resistance and performance in stack tests of near-net-shaped chromium-based interconnects”, S. C. Singhal, M. Dokiya, Proceedings of the Sixth Interantional Symposium on Solid Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17-22 October 1999, pp. 731-765.
54. W. J. Quadakkers, H. Greiner, M. Hansel, A. Pattanaik, A. S. Khanna, and W. Mallener. “Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs”, Solid State Ionics 91 (1996) 55-67.
55. Y. Yoo and M. Daugo, “The effect of protective layers fromed by electrophoretic deposition on oxidation and performance of metallic interconnects”, in: H. Yokokawa, S. C. Singhal, Proceedings of the Seventh Interantional Symposium on Solid Oxide Fuel Cells (SOFC VII), Ysukuba, Ibaraki, Japan, 3-8 June (2001) P 837-846.
56. N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, (1995) P 182.
57. V. A. Cherepanov, L. Yu. Barkhatova, and V. I. Voronin, “Phase Equilibria in the La-Sr-Mn-O System”, Journal of Solid State Chemistry, Vol. 134, pp. 38-44 (1997).
58. 呂駿嶸,固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究,國立台灣科技大學機械研究所碩士學位論文,民國95年7月,台北。59. A. L. Marasco and D. J. Young, “Oxidation of iron-chromium- manganese alloys at 900°C”, Oxidation of Metals. 36 (1991) P 157.
60. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, “Diffusion of cations in chromia layers grown on iron-base alloys”, Oxidation of Metals. 37 (1992). P 81-93
61. P. Kofstad, Nonstoichiometry, in: Diffusion and Electrical Conduct- ivity in Binary Metal Oxides (Wiley-lnterscience, New York, 1972 ).
62. 王朝正,鐵-錳-鋁-鉻合金的高溫氧化,國立清華大學材料科學工程研究所博士學位論文,民國77年7月,新竹。