跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂文良
研究生(外文):Wen-liang Lu
論文名稱:3-DFEM:下顎後牙區植體膺復之應力分析
論文名稱(外文):3-D FEM:Stress Analysis of Implant Supported Restoration in Mandibular Posterior Area
指導教授:曾垂拱
指導教授(外文):Chwei-goong Tseng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:122
中文關鍵詞:植體膺復有限元素後牙區
外文關鍵詞:implantFEMposterior
相關次數:
  • 被引用被引用:3
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
本文旨在探討咬合力於齒冠的不同位置時,在植體周圍骨組織應力分佈的情形,以提供植體設計與臨床醫師膺復治療時的參考。利用逆向工程建構出牙冠形狀,並以x 光斷層掃描圖及3D繪圖軟體建構出含有雙骨質的齒槽骨3D非軸對稱之有限元素模型。針對FRIALIT®-2SYNCHRO植牙系統的植體,以MSC.Patran/Nastran 有限元素分析法模擬臨床咬合時的受力情形。分析結果顯示,牙冠咬合位置決定了齒槽骨內所產生的最大應力。與植體上緣接觸的皮質骨通常承受最大應力,而骨質密度較小之鬆質骨則承受較小的應力。當齒冠相互連結時,隨著咬合位置的改變,力量分散的情況也跟著改變,當咬合點愈靠近整體中間的位置時,可使咬合力分散的愈均勻,因此可得較小的平均應力值。
The thesis mainly discusses the stress distribution in alveolus bone near the implant when the crown is subjected to occlusive force in various positions. The results are helpful to the dentists for designing implant restoration. The thesis uses the Reverse Engineering method to construct the contour of crown, and uses the CAT scan and Computer Aided Design method to construct the three-dimensional model of Finite Element of alveolus bone which contains the cortical bone and cancellous bone and is nonaxial-symmetric. In the thesis, the implant of FRIALIT®-2SYNCHRO system is chosen for the simulated experiment, and the MSC.Patran/Nastran finite element method is used to analyzed the clinical occlusive situation.
From the results, it shows that the occlusive position on crown will decide the maximum stress in alveolus bone. The section of cortical bone that contacts with the upside of implant is generally subjected to the maximum stress, and the cancellous bone whose density is light is subjected to a smaller stress.
As the crown is connected with each other, the scatter situation of occlusive force will be changed depend on the different occlusive position. When the occlusive position is closer to the middle of entire connective crowns, the more even of occlusive force will be scattered. Therefore, it results the smaller average stress value.
中文摘要……………………………………………………………… I
英文摘要……………………………………………………………… II
誌 謝……………………………………………………………… III
目 錄……………………………………………………………… IV
圖表索引……………………………………………………………… VII
第一章 緒論………………………………………………………….. 1
1-1 前言……………………………………………………………… 1
1-2 研究計畫之背景及目的………………………………………… 3
1-3 文獻回顧………………………………………………………… 5
1-3-1 應力分佈研究方法…………………………………………… 5
1-3-2 有限元素應用的相關文獻…………………………………… 6
1-4 論文架構………………………………………………………… 8
第二章 牙科植體概述………………………………………………… 10
2-1 牙科植體的類型………………………………………………… 11
2-1-1 骨膜下種植體………………………………………………… 11
2-1-2 透骨式種植體………………………………………………… 12
2-1-3 骨內式種植體………………………………………………… 13
2-2 牙科植體材料…………………………………………………… 13
2-2-1 金屬類…..…………………………………………………… 14
2-2-2 陶瓷類………………………………………………………… 15
2-2-3 聚合物………………………………………………………… 17
2-3 植體的設計考量………………………………………………… 18
2-3-1 植體的幾何外型..…………………………………………… 18
2-3-2 負荷的影響……..…………………………………………… 19
2-3-3 骨質的考量..………………………………………………… 22
第三章 研究設備與方法…………………………………………… 25
3-1 逆向工程基本原理……………………………………………… 26
3-2 有限元素法基本原理與軟體…………………………………… 30
3-2-1 有限元素法…………………………………………………… 30
3-2-2 MSC.Patran/Nastran有限元素軟體………………………… 34
3-3 模型建構………………………………………………………… 35
3-3-1 齒冠模型的建構……………………………………………… 37
3-3-2 植體模型的建構……………………………………………… 40
3-3-3 齒槽骨模型的建構…………………………………………… 41
3-4 模型分析………………………………………………………… 43
3-4-1 模型的轉換…………………………………………………… 43
3-4-2 元素的選用…………………………………………………… 44
3-4-3 邊界條件設定………………………………………………… 46
3-4-4 應力分析模式及材質設定…………………………………… 51
3-4-5 網格化………………………………………………………… 52
3-4-6 求解…………………………………………………………… 53
第四章 結果與討論…………………………………………………… 58
4-1 結果分析………………………………………………………… 58
4-1-1 第一類型情況之應力分佈…………………………………… 58
4-1-2 第二類型情況之應力分佈…………………………………… 75
4-1-3 第三類型情況之應力分佈…………………………………… 82
4-1-4 第四類型情況之應力分佈…………………………………… 96
4-2 結果討論………………………………………………………… 110
第五章 結論與未來展望……………………………………………… 112
5-1 結論……………………………………………………………… 112
5-2未來展望………………………………………………………… 113
參考文獻……………………………………………………………… 116
作者簡介……………………………………………………………… 122
1. http://sowf.moi.gov.tw/stat/month/m1-06.xls
2. Chen, C. K., Shih, K. S., Peng, T. K., Yao, J. H., Dong, Y. J., Pai, L., 1990. Assessment of periodontal disease in an adult population survey in Taipei city using CPITN and GPM/T indices. Chinese Journal of Dental 9, 67-74.
3. Bahat, O., Handelsman, M., 1996. Use of wide implants and double implants in the posterior jaw. International Journal of Oral and Maxillofacial Implants 11, 379-386.
4. Carlsson, L., Andesson, B., Odman, P., Branemark, P. I., 1992. A new Branemark single tooth abutment. Handing and early clinical experience. International Journal of Oral and Maxillofacial Implants 7, 105-111.
5. http://www.dentalshow.com.tw/guest/columnist/viewcolumndoc.asp? sno=161
6. 張文輝,2005,「美齒與科技 人工植牙」,科學發展,394期,第29頁。
7. Brankemark , P., Zarb, Ga., Albrektsson, T., 1985. Tissue-integrated prostheses osseointegration in clinical dentistry. Chicago quintessence, 117-128.
8. Assif, D., Marshak, B., Horowitz. A., 1996. Analysis of load transfer and stress distribution by an implant-supported fixed partial denture. Journal of Prosthetic Dentistry 75, 285-291.
9. Tashkandi, E. A., Lang, B. R., Edge, M. J., 1996. Analysis of strain at selected bone sites of a cantilevered implant-supported prosthesis. Journal of Prosthetic Dentistry 76, 158-164.
10. Richter, E. J., 1998. In vivo horizontal bending moments on implants. International Journal of Oral and Maxillofacial Implants 13, 232-244.
11. Merickse-Stern, R., Venetz, E., Fahrlander, F., Burgin, W., 2000. In vivo force measurements on maxillary implants supporting a fixed prosthesis or an overdenture: a pilot study. Journal of Prosthetic Dentistry 84, 535-547.
12. Brosh, T., Pilo, R., Sudai, D., 1998. The influence of abutment angulation on strains and stresses along the implant/bone interface: comparison between two experimental techniques. Journal of Prosthetic Dentistry 79, 328–334.
13. 董玉英,1999,「人工種植牙生物力學研究進展」,中國口腔種植學雜誌,Vol. 4, No. 1。
14. Rieger, M. R., Fareed, K., Adams, W. K., Tanquist, R. A., 1989a. Bone stress distribution for three endosseous implant. The Journal of Prosthetic Dentistry 61, 223-228.
15. Rieger, M. R., Mayberry, M., Brose, M. O., 1990b. Finite element analysis of six endosseous implant. The Journal of Prosthetic Dentistry 63, 671-676.
16. 李金聰,1996,「九種骨內牙科植體的有限元素應力分析」,國防醫學院牙醫科學研究所論文。
17. Rajaai, S. M., Khorrami-mehr, S., 2001. Stress analysis on the bone around five different dental implants. Engineering in Medicine and Biology Society, Proceedings of the 23rd Annual International Conference of the IEEE 3, 2995-2997.
18. Meijer, H. J., Starmans, F. J., Bosman, F., Steen, W. H., 1993. A comparison of three finite element models of an edentulous mandible provided with implant. Journal of Oral Rehabilitation 20, 147-157.
19. Stegaroiu, R., Kusakari, H., Nishiyama, S., Miyakawa, O., 1998. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants 13, 781-790.
20. Merz, B. R., Hunenbart, S., Belser, U. C., 2000. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. International Journal of Oral and Maxillofacial Implants 15, 519-526.
21. Hans, V. O., Joke, D., Jos, V. S., Georges, V. P., Igmace, N., 2002. Peri-implant bone tissue strains in case of dehiscence: A finite element study. Clinical Oral Implants Research 13, 327-333.
22. 黃�琤腄A2001,「區域型膺復體人工植牙之生物力學分析」,國立成功大學醫學工程研究所論文。
23. Akca, K., Cehreli, M. C., Iplikcioglu, H., 2003. Evaluation of the mechanical characteristics of a reduced-diameter morse taper implant: a nonlinear finite element stress analysis. Clinical Oral Implants Research in press.
24. K1vanc, A., Murat, C. C., Haldun, I., 2003. Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter more-taper implant: A nonlinear finite element stress analysis. Clinical Oral Implants Research 14, 444-454.
25. Eskitascioglu, G., Usumez, A., Sevimay, M., Soykan, E., Unsal., E., 2004. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. Journal of Prosthetic Dentistry 91(2), 144-150.
26. Geramy, A., Morgano, S. M., 2004. Finite element analysis of three designs of an implant-supported molar crown. Journal of Prosthetic Dentistry 92(5), 434-440.
27. Cranin, A. N., 1970. Oral Implantology. Springfield, Ill, Thomas.
28. 姚振華,2001,「牙科公共衛生學」,國立編譯館,第359頁~第360頁。
29. Kibrick, M., Munir, Z. A., Lash, H., Fox, S. S., 1975. The development of a material system for an endosteal tooth implant. J Oral Implant 6, 172-192.
30. Kibrick, M., Munir, Z. A., Lash, H., Fox, S. S., 1977. The development of a material system for an endosteal tooth implant.II. In vitro and in vivo evaluations of a new composite-material design. J Oral Implant 7, 106-123.
31. Mild, E. E., Bannon, B. P., 1981. Titanium alloys for biomaterial applications–An overview. Presented at A.S.T.M.-sponsored symposium, Phoenix.
32. 呂國富,1999,「人工植牙臨床上生物機械學的考量」,臨床口腔植體學,日毅企業有限公司,第119頁-第125頁。
33. 鐘國雄,2001,「牙科材料學」,合記書局,第437頁~第447頁。
34. Kay, C. Dee, David, A. Puleo, Rena Bizios, 2002. An Introduction to Tissue-Biomaterial Interactions. Wiley-Liss, 1-12.
35. Robbins, Kumar原著,蔡光超、王世晞…等人編譯,1992,「基礎病理學」,藝軒。
36. Sabiston, J. R., Lyerly 著,梁金銅編譯,1997,「莎氏外科學精要」,藝軒。
37. 于仲元主編,1993,「血液淨化」,淑馨。
38. Hench, L. L., Ethridge, E. C., 1982. Biomaterial. A cademic Press. Inc.
39. 洪敏雄、林峰輝、王盈錦,1994,「生醫陶瓷」,陶瓷技術手冊(下),中華民國產業科技發展協進會。
40. Daculsi, G. 1999. Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair. The Chinese Society for Materials, Annual Meeting Workshop.
41. Nie, X., Leyland, A., Matthews, A., 2000. Surf. Coat Technology, 407-414.
42. Gomez-Vega, J. M., Saiz, E., Tomsia, A. P., Marshall, G. W., Marshall, S. J., 2000. Biomaterials. Vol. 21, 105-111.
43. Yen, S. K., 2000. Mater. Chem. Phys. Vol. 63, 256-262.
44. Shih-yun Wu, Yu-lin Lai, Li-jane Ling, 2003. Considerations about bone gualities of jaw bone for dental implant therapy. Chin J Periodontology, Vol. 8, No. 4, 259-262.
45. 賴景義、翁文德,2004,「逆向工程理論與應用」,全華科技圖書股份有限公司,第1~12頁。
46. 金濤、童水光,2005,「逆向工程技術」,新文京開發出版股份有限公司,第2頁。
47. 張仲卿,1999,「逆向工程技術及整合應用」,高立圖書,第1頁~第15頁。
48. 周弘裕,1994,「逆向工程系統簡介」, 機械工業雜誌, V.12,第130頁~第136頁。
49. 吳崑榮,2004,「3-D FEM:植體膺復之非軸向負荷應力分析」,國立台灣科技大學機械工程研究所論文,第21頁。
50. 45445
51. 范光照,2002,「逆向工程技術及應用」, 高立圖書,第1-4頁~第1-10頁/第2-10頁~第2-35頁。
52. 蕭宏欣,2004,「以有限元素分析溫度對電力擾動導致汽機葉片疲勞之影響」,私立南台科技大學電機工程研究所論文,第39頁-第42頁。
53. 許文賢,2002,「脛骨骨髓內釘之有限元素分析」,國立台灣科技大學機械工程研究所論文。
54. Saeed Moaveni, 1999. Finite element analysis : theory and application with ANSYS. Prentice Hall, 1-6.
55. 賴育良、林啟豪、謝忠祐,1997,「ANSYS 電腦輔助工程分析」,儒林圖書,第5頁~第12頁。
56. 吳立德,1999,「3-D不同尺寸的人工牙根植體之應力分析」,私立台北醫學院口腔復健醫學研究所論文。
57. Norman, A. Cranin, Michael Klein, Alan simons, 1999. Atlas of Oral Implantology. Mosby 2nd, 40-47.
58. 蔡佩龍,1998,「三維有限元素分析補綴物連結與否對植體旁骨內應力及應變的影響」, 國立台灣大學牙醫科學研究所論文。
59. 王道,1986,「牙體形態學」,合記圖書出版社,第16頁。
60. Borchers, L., Reichart, P., 1983. Three-dimensional stress distribution around a dental implant at different states of interface development. J Dent Res 62, 155-159.
61. Stegaroiu, R., Kusakari, H., Nishiyama, S., Miyakawa, O., 1998. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants 13, 781-790.
62. Sertgoz, A., 1997. Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont 10, 19-27.
63. Gere & Timoshenko. Mechanics of Materials. 文京圖書有限公司,第497~499頁,Third Edition。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top