跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳信榮
研究生(外文):Chen Hsin-Jung
論文名稱:快速二維方位角及方位角-時間延遲追蹤演算法
論文名稱(外文):Fast Algorithms for 2-D DOA and DOA-Delay Tracking
指導教授:方文賢
指導教授(外文):Fang Wen-Hsien
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:62
中文關鍵詞:子空間追蹤演算法二維方位角估測時域濾除空間束波形成結合方位角及時間延遲估測
外文關鍵詞:subspace tracking algorithm2-D DOA estimationtemporal filteringspatial beamformingDOA-Delay estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
於本論文中,在均勻矩形陣列下,我們提出一個快速而準確的適應性二維方位角追蹤演算法。基於資料中的單一列或單一行,這個新的演算法使用三個一維子空間追蹤演算法,以疊代的方式求出二維方位角。同樣地,為了要提升估測的準確度,這些一維子空間追蹤演算法結合了兩個互補正交的束波形成的程序,可以適當地將被接收訊號做分群,以致於,即使訊號源的方位角非常靠近,我們也可以解析出來。由於這個新演算法只需要一維子空間演算法來求出方位角,所以全部需要的運算複雜度大大地少於現存中二維延伸的子空間演算法,而主要原因是二維子空間演算法需要更新較高維度的特徵質分解或是二維角度的掃瞄。此外,由於樹狀的估測結構,估測出的二維方位角會自動配對,而不再需要額外的運算量。

在無線通訊系統中,相同的技術可以被使用於方位角及延遲時間的結合估測。而利用一個時域濾除及空間束波形成的程序,我們所提出的樹狀結構的方法可以解析非常靠近之入射信號。此外,我們同樣地可以自動配對被接受訊號的方位角及時間延遲。

由已完成的模擬結果可以驗證我們提出的新演算法,不管是在二維方位角或是結合方位角及時間延遲的估測,都可以提供良好的追蹤效能。
In this thesis, we present a fast, yet accurate adaptive algorithm
for tracking two-dimensional (2-D) directions of arrival (DOAs)
using a uniform rectangular array. The new algorithm employs three
one-dimensional (1-D) subspace tracking algorithms to determine
the two DOA components iteratively in a coarse-fine manner based
on a single row or column of data. Also, to enhance the estimation
accuracy, two complementary orthogonal beamforming processes are
invoked between the 1-D subspace tracking algorithms to partition
the incoming signals into appropriate groups so that the DOAs can
be well resolved even if they are very close. Since the new
algorithm only involves the 1-D subspace-based algorithm in
determining the DOAs, the overall computational complexity called
for is substantially less than the direct 2-D extension of the
existing subspace tracking algorithms, which requires an update
higher-dimensional eigendecomposition or 2-D search.
%computationally demanding 2-D search.
Furthermore, with the tree-structured estimation scheme, the
estimated 2-D DOA components are automatically paired without
extra computational overhead.

The similar technique is also employed for joint DOA-delay
estimation in wireless communication systems. Using a temporal
filtering process and a spatial beamforming process, the proposed
tree-structured approach can resolve incoming rays even with very
close DOAs or delays. In addition, the estimated DOAs and delays
are also automatically paired.

Furnished simulations show that the new algorithm can provide
satisfactory tracking performance of either the 2-D DOA or
DOA-delay estimates in various scenarios.
1 INTRODUCTION 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of the Thesis . . . . .. . . . . . . . . . . . . . 4
2 REVIEW OF DOA ESTIMATION ALGORITHM 6
2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Subspace-Based DOA Estimation . . . . . . . . . . . . . . . . . 8
2.2.1 MUSIC Algorithm . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Root-MUSIC Algorithm . . . . . . . . . . . . . . . . . . . . 11
2.2.3 ESPRIT Algorithm . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Adaptive Subspace-Based DOA Tracking . . . . . . . . . . . . . 15
2.3.1 Inflation Method . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 PAST Algorithm . . . . . . . . . . . . . . . . . . . . . . . 24
3 FAST ADAPTIVE ALGORITHM FOR EIGENSUBSPACE-BASED
2-D DOA TRACKING 29
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 2-D DOA Tracking Algorithm . . . . . . . . . . . . . . . . . . 31
3.3 Proposed Tree-Structured DOA Tracking Algorithm . . . . . . . 33
3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . 40
3.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 FAST ADAPTIVE JOINT DOA AND DELAY TRACKING IN
DS-CDMA SYSTEM 48
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Adaptive Joint DOA and Delay tracking . . . . . . . . . . . 50
4.3 Simulation and Discussion . . . . . . . . . . . . . . . . . . 53
4.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 CONCLUSIONS 58
REFERENCE 60
[1] W.D. Blair, B.J. Slocumb, G.C. Brown and A.H. Register, “Tracking closelyspaced,
possibly unresolved, rayleigh targets:idealized resolution,” in Proc.
IEEE Aerospace Conf., pp. 1543-1550, 2002.
[2] B. He, D. Wang, M. Phain and T. Yu, “Position and orientation estimation
with high accuracy for a car-like vehicle,” in Proc. IEEE Intelligent Transportation
Systems Conf., pp. 528-533, 2002.
[3] A. Kuchar, M. Tangemann and E. Bonek, “A real-time DOA-based smart
antenna processor,” IEEE Trans. on Vehicular Technology, pp. 1279-1293,
2002.
[4] H. L. Van Trees, Optimun Array Processing. Wiley-Interscience, 2002.
[5] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,”
in Proc. RADC Spectral Estimation Workshop, pp. 243-258. Rome, NY. 1979.
[6] A. J. Barabell, “Improving the resolution performance of eigenstructure-based
direction-finding algorithm” Proc. ICASSP, Boston, MA, pp. 336-339, 1983
[7] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational
invariance techniques,” IEEE Tran. ASSP, vol. 37, pp. 984-995, July
1989.
[8] S. Sekizawa, “Estimation of arrival directions using MUSIC algorithm with a
planar array,” in Proc. IEEE Universal Personal Communications, pp. 555-
559, Italy, 1998 .
[9] M. Pesavento and J.F. B¨ohme, “Eigenstructure-based azimuth and elevation
estimation in sparse uniform rectangular arrays,” in Proc. IEEE Sensor Array
and Multichannel Signal Processing Conf., pp. 327-331, Aug. 2002.
[10] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle
estimation with rectangular arrays in element space or beamspace via Unitary
ESPRIT,” IEEE Trans. on Signal Processing, vol. 44, pp. 316-328, Feb. 1996.
60
[11] P. A. Thompson, “An adaptive spectral analysis technique for unbiased frequency
estimation in the presence of the white noise,” in Proc. 13th Asilomar
Conf. Circuit, Syst. Comput., Pacxfic Grove, CA, 1980
[12] V.U. Reddy, B. Egardt, and T. Kailath, “Least squares type algorithm for
adaptive implementation of Pisarenko’s harmonice retrieval method,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, 1982.
[13] S. Bannour and M. R. Azimi-Sadjadi, “An adaptive approach for optimal
data reduction using recursive least squares learning method,” in Proc. IEEE
ICASSP pp. II297-II300 San Francisco, CA, 1992.
[14] X. Yang, T. K. Sarkar. and E. Arvas, “A survey of conjucate gradient algorithms
for solution of extreme eigen-problems of a symmetric matrix,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1550-1556, 1989.
[15] G. W. Stewart, ”An updating algorithm for subspace tracking,” IEEE Trans,
Signal Processing, vol. 40, pp. 1535-1541, 1992.
[16] C. H. Bischof and G. M. Shroff, “On updating signal subspace,” IEEE Trans,
Signal processing, vol. 40, pp. 96-105, 1992.
[17] N. L. Owsley, “Adaptive data orthogonalization,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, 1978
[18] J.-F Yang and M. Kaveh, “Adaptive eigensubspace algorithms for direction or
frequency estimation and tracking,” IEEE Trans. on Acoustics, Speech, and
Signal Processing, pp. 241-251, Feb. 1988.
[19] J.-F Yang and H.-J. Lin, “Adaptive high-resolution algorithms for tracking
nonstationary sources without the estimation of source number,” IEEE Trans.
Signal Processing, vol. 42, pp. 563-571, March 1994.
[20] B. Yang, “Projection approximation subspace tracking,” IEEE Trans. on Signal
Processing, pp. 95-107, Sept. 1995.
[21] A. Swindlehurst and T. Kailath, “Azimuth/Elevation direction finding using
regular array geometry,” IEEE Tran. on Aerospace and Electronic Systems,
vol. 29, pp. 145-156, 1993.
[22] A. L. Swindlehurst, “Time delay and spatial signature estimation using known
asynchronous signals,” IEEE Trans. Signal Processing, vol. 46, pp. 449-461,
Feb. 1998.
[23] M. P. Clark, and L. L. Scharf, “Two-dimensional modal analysis based on
maximum likelihood,” IEEE Trans. Signal Processing, vol. 46, pp. 449-461,
Feb. 1998.
61
[24] M. C. Vanderveen, A. L. van der Veen, and A. Paulraj, “Estimation of multipath
parameters in wireless communications,” IEEE Trans. on Signal Processing,
vol. 46, pp. 682-691, Mar. 1998.
[25] Y. Ogawa, N.Hamaguchi, K.Ohsfima, and K.Itoh, “High-resolution analysis
of indoor multipath propagation structure,” IEICE Trans. Communications,
E78B, pp. 1450-1457, Nov. 1995.
[26] M. C. Vanderveen, C. B. Papadias and A. Paulraj, “Joint angle and delay
estimation(JADE) for multipath signals arriving at an antenna array,” IEEE
Comm. Letters, vol. 1, pp. 12-14, Jan. 1997.
[27] K.-H. Wu, W.-H. Fang, H.-J. Chen and J.-T Chen, “A low complexity adaptive
algorithm for tracking of eigenspace-based two-dimensional directions
of arrival.” in Proc. IEEE/ACES on Wireless Communications and Applied
Computational Electromagnetics , 2005
[28] S. Haykin, Adaptive Filter Theory, 3rd ed, Prentice-Hall, New Jersey, 1996
[29] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins
University Press, 1996
[30] Y.-Y. Wang, J.-T. Chen and W.-H. Fang, “TST-MUSIC for joint DOA-delay
estimation,” IEEE Trans. Signal Processing, vol. 46, pp. 721-729, Apr. 2001.
[31] J.-D. Lin, W.-H. Fang and M.-Lu. Wu, “Joint spatial-temporal channel parameter
estimation using tree-structured MUSIC,” in Proc. IEEE VTC, vol.1,
pp.185-189, May. 2002
[32] J.-T. Chen, C. B. Papadias and G. J. Foschini, “Dynamic signature assignment
for reverse-link CDMA systems,” in Proc. IEEE International Conference on Commun., pp. 912 -916, 1999.
[33] K. Feher, Wireless Digital Communications. Prentice-Hall, 1995.
62
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top