(54.236.58.220) 您好!臺灣時間:2021/03/01 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪瑞鴻
研究生(外文):Hung, Ruei-Hung
論文名稱:2kW功率因數修正器研製
論文名稱(外文):Study and Implementation of a 2-kW Power Factor CorrectorStudy and Implementation of a 2-kW Power Factor CorrectorStudy and Implementation of a 2-kW Power Factor CorrectorStudy and Implementation of a 2-kW Power Factor Corrector
指導教授:羅有綱
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:功率因數修正器平均電流模式控制
外文關鍵詞:power factor correctoraverage current control
相關次數:
  • 被引用被引用:73
  • 點閱點閱:1296
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:312
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在於討論功率因數修正器之設計,並針對其種類及控制策略進行分析與比較,最後以升壓型轉換器作為主電力電路架構,採用固定切換頻率及平均電流控制模式,以降低輸入電流諧波,並使輸入電流與電壓同相,達到單一功率因數的目的。
在實作上分別以UC3854及L4981做為控制IC,研製一2 kW的功率因數修正器。實驗結果驗證了所採控制技術之正確性與可行性,同時也提及後續可能的研究方向,以期更為提高功率及效率。
This thesis is focused on the design and implementation of a power factor corrector (PFC). Various types of PFC topologies and several control schemes are also discussed and compared. Finally, the average current mode control with a constant switching frequency is adopted. The main objective is to reduce the input current harmonics and to achieve a unity power factor.
Two 2-kW PFC prototypes are implemented based on the UC3854 and L4981 control IC’s, respectively. Satisfactory experimental results confirm the validity and feasibility of the adopted scheme. Potential future works are mentioned to further improve the power level and conversion efficiency.
第一章 緒論 ------------------------------------------------------------ 1
1-1 研究動機及目的 ------------------------------------------------ 1
1-2 內容大綱 --------------------------------------------------------- 3
第二章 功率因數修正原理 ------------------------------------------ 4
2-1 功率因數與總諧波失真之定義 -------------------------------- 4
2-2 功率因數修正器之種類 ----------------------------------------- 7
2-2-1 被動式功率因數修正器 --------------------------------- --- 7
2-2-2 主動式功率因數修正器 --------------------------------- --- 9
2-3 功率因數修正器之架構 ----------------------------------------- 10
2-3-1 降壓型電路架構 --------------------------------------------- 10
2-3-2 升降壓型電路架構 ------------------------------------------ 11
2-3-3 升壓型電路架構 --------------------------------------------- 12
2-4 升壓型功率因數修正器之原理 -------------------------------- 13 2-5 電流控制模式 ----------------------------------------------------- 15
2-5-1 電壓隨耦控制法 --------------------------------- ------------ 16
2-5-2 乘法器控制法 ------------------------------------------------ 17
2-5-2-1 平均電流控制法 --------------------------------------- 20
2-5-2-2 峰值電流控制法 --------------------------------------- 21
2-5-2-3 磁滯電流控制法 --------------------------------------- 23
第三章 以UC3854及L4981設計之功率因數修正器 --------- 25
3-1 UC3854內部方塊圖及各接腳介紹 ------------------------- 25
3-2 L4981內部方塊圖及各接腳介紹 --------------------------- 27 3-3 控制電路設計 --------------------------------------------------- 29
3-3-1 電流偵測 --------------------------------------- --------------- 30
3-3-2 過載峰值電流限制 ------------------------------------------ 31
3-3-3 乘法器設計 --------------------------------------------------- 32
3-3-3-1 前饋電壓 --------------------------------------------- --- 33
3-3-3-2 電壓誤差放大器 ------------------------------------ --- 35
3-3-3-3 乘法器輸入電流 ------------------------------------ --- 38
3-3-3-4 乘法器最大輸出電流限制 ------------------------ --- 38
3-3-4 功率開關切換頻率 ------------------------------------------ 40
3-3-5電流誤差放大器 --------------------------------------------- 40
3-3-6 過電壓保護電路 --------------------------------------------- 42
第四章 設計實例與考量 --------------------------------------------- 44
4-1 儲能電感設計 ------------------------------------------------------ 44
4-1-1 電感值計算 ------------------------------------ --------------- 44
4-1-2 鐵心材質的選擇 ------------------------------ --------------- 45
4-1-3 繞線線徑的選擇 ------------------------------ --------------- 45
4-1-4 鐵心大小及初始磁係數的選擇 ------------ --------------- 46
4-1-5 計算鐵心的直流飽和特性 ------------------ --------------- 46
4-1-6 電感值的調整 --------------------------------- --------------- 47
4-2 輸出電容設計 ------------------------------------------------------ 48
4-3 功率開關的選擇 --------------------------------------------------- 49
4-3-1 功率開關驅動電路 ------------------------ --------------- 49
4-4 主二極體的選擇 --------------------------------------------------- 50
4-5 橋式整流器的選擇 ------------------------------------------------ 50
4-6 效率評估 ------------------------------------------------------------ 51
4-6-1 橋式整流器的損失 ------------------------ ------------------ 51
4-6-2電感的損失 ------------------------ --------------------------- 51
4-6-3 功率開關的損失 ------------------------ --------------------- 53
4-6-4 偵測電流電阻的損失 ------------------------ --------------- 54
4-6-5 主二極體的損失 ------------------------ --------------------- 54
4-6-6 全機損耗 ------------------------ ------------------------------ 54
4-6-7 全機效率評估 ------------------------ ------------------------ 54
第五章 實驗數據及波形 --------------------------------------------- 56
5-1 UC3854之實驗波形 --------------------------------------------- 57
5-2 L4981之實驗波形 ------------------------------------------------ 67
5-3 UC3854與L4981之實驗結果比較 --------------------------- 78
第六章 結論與未來展望 --------------------------------------------- 81
6-1 結論 --------------------------------------------------------------- 81
6-2 未來展望 --------------------------------------------------------- 81
參考文獻 --------------------------------------------------------------------- 82
[1]S. Manias, “Novel full bridge semicontrolled switch mode rectifier,” IEE Proc. Electric Power Applications, vol. 138, no. 5, pp.252-256, Sept., 1991.
[2]R. Martinez and P. N. Enjeti, “A high-performance single-phase rectifier with input power factor correction,” IEEE Trans. Power Electronics, vol. 11, no. 2, pp. 311-317, Mar. 1996.
[3]R. I. Deng, and K. Ishizaka, “Single-phase sinusoidal converter using MOSFETs,” IEE Proc. Electric Power Applications, vol. 136, pt. 13, no. 5, pp. 237-242, Sept., 1989.
[4]N. Mohan, T.-M. Undeland, and W.-P. Robbins, “Power electronics, ” Third Edition.
[5]S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with improved input power factor and high power density,” IEEE Trans. Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
[6]J. T. Boys, and A. W. Green, “Current-forced single-phase reversible rectifier,” IEE. Proc. Electric Power Applications, vol. 136, no. 5, pp. 205-211, 1989.
[7]P. N. Enjeti, and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Proc. APEC’93, pp. 190-195, 1993.
[8]J. C. Salmon, “Techniques for minimizing the input current distortion of the current-controlled single-phase boost rectifier,” IEEE Trans. Power Electronics, vol. 8, no. 4, pp. 509-520, 1993.
[9]R. Oruganti, and C. Y. Thean, “A novel PFC scheme for AC to DC converter with reduced losses,” IEEE Proc. IECON’94, pp. 639-645, 1994.
[1]Y. K. Lo, S. Y. Ou, and H. J. Chiu, “Coupling analysis of a three-phase power factor corrector composed of three single-phase modules,” IEEE Trans. Industrial Electronics, pp. 1285-1288, 2001.
[2]J. S. Lai, and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” IEEE Proc. APEC’ 93, pp.267-273, May. 1993.
[3]R. Srinivasan, and R. Oruganti, “A unity power factor converter using half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13, no. 3, pp. 487-499, 1998.
[4]B. P. Divakar, and D. Suanto, “A new boost power factor pre-regulator,” IEEE Proc. PEDS’99, vol. 2, pp. 915-920, 1999.
[5]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency harmonics for continuous-conduction-mode boost power-factor correction,” IEE Proc. Electric Power Applications, vol. 148, pp.202-206, 2001.
[6]R. Oruganti, K. Nagaswamy and L. K. Sang, “Predicted (on-time) equal-charge criterion scheme for constant-frequency control of single-phase boost-type AC-DC converters,” IEEE Trans. Power Electronics, vol. 13, no. 1, pp. 47-57, Jan. 1998.
[7]O. Stihi, and B. T. Ooi, “A single-phase controlled-current PWM rectifier,” IEEE Trans. Power Electronics, vol. 3, no. 4, pp. 453-459, Oct. 1988.
[8]C. A. Canesin, and I. Barbi, “Analysis and design of constant-frequency peak-current-controlled high-power-factor boost rectifier with slope compensation,” IEEE APEC’96, vol. 2, pp. 807-813, 1996.
[9]L. Dixon, “Average current mode control of switching power supplies,” Unitrode Application Note, U-140, pp. 356-369.
[10]J. W. Lim, and B. H. Kwon, “A power-factor controller for single-phase PWM rectifiers,” IEEE Trans. Industrial Electronics, vol. 46, no. 5. pp. 398-404, May 2002.
[11]Y. K. Lo, H. J. Chiu, and S. Y. Ou, “Constant-switching-frequency control of switch-mode recifiers without current sensors,” IEEE Trans. Industrial Electronics, vol. 47, no. 5, pp. 1172-1174, Oct. 2000.
[12]“Enhanced high power factor preregulator,” Texas Instruments Application Note, 1999.
[13]P. C. TODD, “UC3854 controlled power factor correction circuit design, ” Unitrode Application Note U-134.
[14]“Power factor corrector,” STMicroelectronics, L4981A, Oct. 2000.
[15]U. Moriconi, “Designing a high power factor switching preregulatior with the L4981 continuous mode,” STMicroelectronics Application Note AN628, Feb. 2003.
[16]A. Pietkiewicz, and D. Tollik, “New high power single-phase power factor corrector with soft-switching,” IEEE Proc., INTELEC’96, pp. 114-119, Oct. 1996.
[17]L. Balogh, ”Design and application guide for high speed MOSFET gate drive circuit,” Texas Instruments Incorporated. Application Note, Power supply Design Seminar, pp. 2-1~2-39, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔