(3.238.96.184) 您好!臺灣時間:2021/05/08 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳秉錡
研究生(外文):Bing-Chi Wu
論文名稱:加工條件對SI型塑膠光纖光傳輸損耗性能研究
論文名稱(外文):Investigations of the Influence of Processing Conditions on the Transmission Loss Properties of Step-Index Plastic Optical Fibers
指導教授:葉正濤
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:高分子工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:塑膠光纖流變儀
外文關鍵詞:Plastic Optical Fibersrheometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:463
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先探討製備塑膠光纖芯層材料(包括聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)及金屬觸媒環烯烴(MCOC)塑膠系列中的ARTON、TOPAS及ZEONEX)及含氟共聚合物(THV) 皮層材料之流變性質。 再將經流變儀所測得的數值搭配經理論公式計算推導數值,修正得到適用於複合紡絲機之修正值。進而探討不同芯層材料所製備之塑膠光纖在最適化加工條件下,光纖傳輸損耗值與芯皮層剪切黏度比的關係。結果發現經各芯層材料所製備之塑膠光纖大致均會在最適化芯皮層剪切黏度比值下出現光纖傳輸損耗之極小值。 為瞭解上述這些有趣之塑膠光纖光損耗性質,各芯層材料之紅外線、紫外線及可見光吸收光譜和塑膠光纖樣品之霧度及斷面型態均在本文中進一步探討。
In this study, we discussed the rheologic properties of poly carbonate(PC)、poly methyl methacrylate(PMMA)、poly styrene(PS) and ARTON、TOPAS and ZEONEX of metallocene cyclic olefin copolymer(MCOC) series as core material and fluoro copolymer(THV) as cladding material making plastic optical fiber at first. Then according to the data measured by rheometer, we got the correlation suitable for complex fiber-spinning machine after calculation from formula. Furthermore, we investigated the relationship of transmission loss and core/cladding shear viscosity under the optimization of processing. The result shows the minimum of transmission loss corresponding different core/cladding shear viscosity with different core material. In order to understand the behavior of plastic optical fiber, their ultra-red, ultraviolet and visible light absorption spectrum, haze and the cross-section morphology were also discussed further.
論文摘要…………………………………………………………………I
ABSTRACT……………………………………………………………...II
誌謝……………………………………………………………………..III
目錄……………………………………………………………………...V
圖表索引……………………………………………………………...VIII
第一章 前言……………………………………………………………..1
1.1 光纖之起源………………………………………………………….1
1.2 光纖傳輸原理……………………………………………………….3
1.3 光纖構造…………………………………………………………….7
1.4 光纖分類…………………………………………………………….8
  1.4.1 依材料分類……………………………………………………8
  1.4.2 依折射率分佈方式分類……………………………………..10
  1.4.3 依光纖傳輸模數分類………………………………………..11
第二章 文獻回顧………………………………………………………12
2.1 芯層材料(core material)的種類………………………………..13
2.1.1 聚碳酸酯(Poly Carbonate)……………………………….13
2.1.2 聚甲基丙烯酸甲酯 (Poly methyl methacrylate) ..………….14
2.1.3 聚苯乙烯 (Poly Styrene) …………………………………..,.15
2.1.4 氘化聚合物 (deulerated material) ………………………….16
2.2 MCOC(Metallocene Cyclic Olefin Copolymer) 塑料的種類……..17
2.2.1 ARTON塑料………………………………………………….19
2.2.2 TOPAS塑料…………………………………………………..20
2.2.3 ZEONEX塑料………………………………………………..21
2.2.4 APEL塑料…………………………………………………….22
2.3 皮層材料(cladding materail)種類………………………………….23
2.3.1 聚全氟乙丙烯 FEP………………………………………….23
2.3.2 THV氟塑料………………………………………………...24
2.3.3 Teflon AF系列……………………………………………...25
2.4 光纖傳導損失特性………………………………………………...26
2.4.1 固有損耗 (Intrinsic Loss) ……………………………..…….27
2.4.1-1 固有吸收損耗 (Intrinsic Absorption Loss) ……..………..27
2.4.1-2 固有散射損耗 (Intrinsic Scattering Loss) ………………..29
2.4.2 非固有損耗 (Extrinsic Loss) ……...………………………..31
2.4.2-1 非固有吸收損耗 (Extrincsic Absoption Loss) …………...31
2.4.2-2 非固有散射損耗 (Extrinsic Scattering Loss) ………….…32
2.5 SI型塑膠光纖的製程技術…………………………………….…34
2.5.1 共擠出 (co-extrusion) 法…………………………………....34
2.5.2 棒拉 (pipe rod) 法…………………………………………..36
2.5.3 塗覆 (coating) 法……………………………………………37
2.6 SI型塑膠光纖損耗係數量測…………………………………….38
2.7 塑膠光纖的現況與展望…………………………………………...40
第三章 實驗…………………………………………………………..41
3.1 原料………………………………………..……………………….41
3.2 塑膠光纖原料樣品流變性質測定及在複合紡絲機內之流變性質
分析……………………………………..……………………...….42
3.2.1塑膠光纖原料樣品流變性質之測定……………………..….42
3.2.2塑膠光纖原料樣品在複合紡絲機內之流變性質分析…..….43
3.3 原料準備及樣品製備………………………………………….…..48
3.4 紅外線吸收光譜分析………………………………………….…..51
3.5 紫外光-可見光吸收光譜分析……………………………….…..52
3.6 霧度性能分析………………………………………………….…..53
3.7 斷面型態分析………………………………………………….…..54
3.8 光纖傳輸損耗分佈…………………………………………….…..55
第四章 結果與討論……………………………………………….….56
4.1 塑膠光纖原料在複合紡絲機內之流變性質……………………...56
4.2 最適化加工溫度與芯皮層剪切黏度比分析………………….…..67
4.3 霧度性能分析………………………………………………….…..75
4.4 全波段光譜光傳輸損耗值分析…………………...……….….…..77
4.5 紫外光-可見光吸收光譜分析…………………….……………..79
4.6 紅外線吸收光譜分析……………………………………………...82
4.8 斷面型態分析………………………………………………….…..86
第五章 結論……………………………………………………….….93
參考文獻…………………………………………………………….….95
作者簡介……………………………………………………………....101
1. Lawrence A. Hornak., Polymer Optical Fibers in Polymers for Light
wave and Integrated Optics., Dekker, 1-38 (1992).
2. M. Naritomi, CYTOP Amorphus Fluoropolymers for low loss POF, in
POF Asia-Pacific Forum-96, 115-120 (1996).
3. T. Kaino, Absorption losses of low loss plastic optical fibers, Jpn. J.
Appl. Phys., vol. 24, 1661 (1985).
4. Koike Y, Ishigure T, Horibe A, Nihei E, Proceedings of Second
International Conference on Plastic Optical Fibers and Application.
The Hauge, The European Institute for Communications
and Networks, 147-148 (1993).
5. Club des Fibres Optiques Plastiques, Plastic Optical Fibres, Practical
Applications,Wiley, 256-279 (1997).
6. Fiber Optics Data Book, Siemens, 31-56 (1998-1999).
7.劉瑞祥編譯, 基礎光學纖維, 復文書局, 第13-19頁 (1986).
8.賴耿陽、蘇品貴編撰, 塑膠光纖應用技術, 復漢書局, 第56-63頁
(2001).
9.廖德照、黃素真編譯, 光纖技術手冊-第二版, 全華科技圖書股份有
限公司, 第69-76頁 (2001).
10. E. Nihei, T. Ishigure, N. Tanio, and Y. Koike, Present prospect of
graded index plastic optical fiber in telecommunications, IEICE
Trans. Electron., vol. E-80-c, 117-122 (1997).
11.王宏宇, 集束性光學元件之製作及特性探討, 國立成功大學碩士
論文 (1999).
12.何佳樺, 含奈米無機微粒塑膠光纖之製作及學特性研究, 國立成
功大學碩士論文(2002).

13.鄭振東著, 光纖與無線通信系統, 全華科技圖書股份有限公司,
第1-1章, 第1-6頁 (1999).
14.賴耿陽、蘇品書等編撰, 通訊光纖應用技術-石英光纖篇,復漢出版
社印行, 第1章, 第1-18頁 (1999).
15.彭吉虎、吳伯瑜編著, 光纖技術及應用, 北京理工大學出版社,
第1-5頁 (1994).
16.聶秋華編著, 單模光纖及其特性參數測量, 全華科技圖書股份有
限公司, 第2-15頁 (1994).
17.白中和編譯, 光纖通信技術, 建興出版社, 第34-69頁 (2001).
18.李明淵編著, 光纖通信概論, 全華科技圖書股份有限公司, 第
20-25頁(1992).
19.吳曜東編著, 光纖通訊系統原理與應用, 全欣資訊圖書公司, 第
67-68頁(1994).
20.江源、鄒寧宇編著, 聚合物光纖, 化學工業出版社(2002).
21.蔣念祖編撰, 高速、高效傳輸服務背後功臣-光通訊產業現況與發
展, 電工資訊, 第28卷, 第64頁 (2000).
22.鄭振東著, 光纖與無線通信系統, 全華科技圖書股份有限公司,
第7-16頁(1999).
23.徐晉平,塑膠光纖-新型的光傳輸技術, 智能建築資訊, 第一期, 第
78-81頁(2003).
24.唐新華,聚合物光纖用材料與特性(下), 高分子工業, 第109期,
第80-86頁(2003).
25.陳春池,光學材料-塑膠光纖,產業技術資訊, 11月, 第25-27頁,
(2001).

26.張豐志編著,應用高分子手冊,五南圖出版股份有限公司,
第3-9頁 (2003).
27.蕭柏齡,導光高分子, 化工資訊, , 12月, 第19-26頁 (1999).
28.唐新華,聚合物光纖用材料與特性(下), 高分子工業, 第109期,
第80-86頁 (2003).
29.施希弦,塑膠光纖簡介, 化工資訊,第4期, 第35-41頁(2001).
30.何耀宗,光纖材料的現況與未來,化工資訊, 第60-62頁, 9月(2000).
31.丁晴、陸希弦, mcoc之現況及未來展望,化工資訊, 第60-64頁
(2000).
32. J.Zubia and J.Arrue, An Introduction to Their Technological
Processes and Applications, Optical Fiber Techology, 7-101 (2001).
33. J. Arrue and J. Zubia, Components Choice to Lengthen Low Speed
Plastic Fiber Optical Communications Links, Third International
Conference on Plastic Optical Fibres and Applications POF’94,
Yokohama Japan , 78-81(1994).
34. Joseba Zubia and Jon Arrue,An introduction to their technological
process and applications,Optical Fiber Technology, 104-135 (2001).
35. Y. Ohishi, S. Mitachi, T. Hanamori, and T. Manobe, Optical
Absortion of 3D Transition Metals and Rare Earth Element in
Zircomiunfluoride Glasses, Phys. Chem., vol. 24, 77 (1983).
36.江源、鄒寧宇編著, 聚合物光纖, 化學工業出版社,第16-29頁
(2002).
37. Jyh-Ping Hsu, Sung-Hwa Lin, Analysis of co-extrusion process for
preparation of gradient index plastic optical fiber, Polymer, 44 (2003).
38. R. K. Luneburg, Mathematical theory of optics., Berkeley: University
Of California Press (1964).

39. High performance plastic fiber optics, ESKA, Mitsubishi Rayon Co.
Ltd.
40. Asahi Glass Industries, Ltd., Plastic Optical Fibers for High-Speed
Transmission, Technical Bulletin(Luminous NC-1000, NMC-1000,
PMC-1000).
41. Boston Optical Fiber, Raytela Polymer Optical Fiber Cord, Toray
Industries, OptiMega and OptiGiga (2000).
42. Fiber Optic and High Speed Integrated Circuit Components
Designer’s Catalog, Hewlett Packard, 7-10 (1997).
43. Fiber Optics Data Book, Siemens, 25-56 (1998-1999).
44.江源、王志明, 聚苯乙烯芯塑料光纖共擠拉製工藝[J], 塑料工業,
第24卷, 第76-78頁(1996).
45.于建明、賈景農, PMMA芯/氟樹脂包層塑料光纖的研製[J], 塑料工
業,第18卷, 第16-20頁(1990).
46.陳春池, 光學材料-塑膠光纖, 產業技術資訊, 第34-36頁, 11月
(2001).
47. Tynes A.R., Pearson A.D., bisbee D.L., Loss mechanisms and
measurements in clad glass fibers and bulk glass, J. Opt. Soc. Am
61, 143-153 (1971).
48.徐晉平, 塑膠光纖-新型的光傳輸技術, 智能建築資訊, 第25-28頁,
第一期 (2003).
49. S. Teshima and H. Munekuni, Multicore POF for High Speed Data
Transmission,in Proc. Seventh Conference on Plastic Optical Fibers
and Applications POF’98, Berlin, 135-142 (1998).
50. F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J.
Ebeling, M. Naritomi, and R. Yoshida, Multi-Gb’s Grade-Index POF
Data Link with Butt-coupled Single-Mode InGaAs VCSEL, IEEE
Photon. Technol. Lett., vol. 12, no. 2, 199 (2000).
51. M. Naritomi, Model home project in Japan using GI-POF,in Proc.
Ninth International Conference on Plastic Optical Fibres and
Applications POF’00, Boston MA, 8-11 (2000).
52. R. Szweda, Plastic optical fiber budgets the gap between glass and
cooper,Opto & Laser Europe, vol. 72, 49 (2000).
53. A.G. Fredrickson & R.B. Bird, Ind. Eng. Chem., 50, 347-352 (1958).
54. Tadmor Zehev, Gogos Costas G., “Principles of Polymer Processing,” Wiley, New York, 178, 1978.
55. R.B. Bird, W.E. Stewart and E. N. Lightfoot, “Transport Phenomena,” Wiley, New York, 51, 1960.
56. Tadmor Zehev, Gogos Costas G., “Principles of Polymer Processing,”
Wiley, New York, 555, 1978.
57. J. Brandrup, E.H. Immergut, and E.A. Grulke, “Polymer Handbook,“
Wiley, New York, 1999.
58. Rao, C. N. R., Ultra-violet and visible spectroscopy: chemical
applications, Butterworths, 1974.
59. Clark, B. J., Ultraviolet Spectrometry Group (Great Britain), UV
spectroscopy: techniques, instrumentations, data handling, Chapman
& Hall, 1993.
60. Kenzo Hirayama, Handbook of Ultraviolet and Visible Absorption
Spectra of Organic Compounds, Wiley, New York, 1967.
61. Kaino, T., M. Fujiki, S. Oikawa, and S. Nara, Low-loss plastic optical
fibers, Appl. Opt., 20, 2886-2888, 1981.
62. Kaino, T., M. Fujiki, and S. Nara, Low loss polystyrene-core optical
fibers, J. Appl. Phys., 52, 7061-7063, 1981.

63, Crist, B., M. E. Marhic, G. Raviv, and M. Epstein, Optical absorption
in polymer glasses by laser calorimetry, J. Appl. Phys., 51, 1160-1162,
1980.
64. Bower D. I. & Maddams W. F., The Vibrational Spectroscopy of
Polymers, London, 98-124, 1989.
65. Siesler H. W., Holland-Moritz K., Infrared and Raman Spectroscopy
of Polymers, New York, 72-162, 1980.
66. Veerawat W., Srichatrapimuk and Stuart L. Cooper, Infrared Thermal Analysis of Polyurethane Block Polymers, J. Macromol. Sci.–Phys., 267-311, 1978.
67. Robert M. Silverstein, Spectrometric Identification of Organic Compounds, Wiley, 104-197, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔