跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾雅楨
研究生(外文):Ya-Chen Tseng
論文名稱:長期加溫與短期夜間涼溫對蝴蝶蘭生理生化性質的影響
論文名稱(外文):The effect of long-term elevated-temperature and short-term cool-night temperature on the physiological and biochemical properties of Phalaenopsis
指導教授:王恆隆
指導教授(外文):Heng-Long Wang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:98
中文關鍵詞:碳水化合物涼夜溫加溫處理有機酸蝴蝶蘭光合作用
外文關鍵詞:carbohydratecool-night temperatureelevated-temperature treatmentorganic acidPhalaenopsisphotosynthesis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溫度是影響蝴蝶蘭生長發育的重要環境因子之一。本論文探討在生長箱的短期夜
間涼溫及在台糖烏樹林環控溫室的長期加溫對不同品種蝴蝶蘭-耐不良環境的台灣阿
媽及對不良環境敏感的大白花雜交種,在光合作用效率及生化代謝的變化,除了可以
瞭解台灣阿媽較耐逆境的可能機制,亦可以提供業者作為改善溫度條件調控蝴蝶蘭抽
梗的參考依據。
成熟蘭苗在不同夜溫的生長箱馴化兩週後,20℃的短期涼夜溫有利於增加台灣阿
媽的氣孔導度,估算有90%夜間累積的蘋果酸係來自空氣中的CO2;然而28℃的高
夜溫會降低氣孔導度造成合成的蘋果酸有65%來自呼吸作用所釋放的CO2。相對的,
28℃與20℃的夜溫差異不會改變大白花雜交種合成蘋果酸的CO2 來源,皆約有70%
來自呼吸作用。因此,台灣阿媽對溫差變化的敏感度明顯高於大白花雜交種。葉綠素
螢光分析顯示,20℃的涼夜溫會降低大白花雜交種的最高光效率 (ΦP0) 及些微增加
最小螢光值 (F0),暗示有慢性光抑制 (Chronic photoinhibition) 現象,因此推測大白
花雜交種不適合栽培在接近20℃的涼夜溫。
不論在生長箱不同夜溫處理或在台糖烏樹林環控溫室長期未加溫處理,台灣阿媽
與大白花雜交種在CO2 的吸收、蘋果酸與澱粉的含量、以及phosphoenolpyruvate
carboxylase (EC4.1.1.31,PEPCase) 與NAD+-malic enzyme (EC1.1.1.39,NAD+-ME)
的活性皆呈現明顯的日韻律變化,顯示蝴蝶蘭是屬於絕對景天酸型代謝(obligate
crassulacean acid metabolism) 的植物。然而當長期加溫處理五個月後,蘭苗的有效光
效率 (ΦP) 降低與非光化學淬火 (qN) 升高,顯示蘭苗的光合系統Ⅱ受到部份抑制。
同時暗期表現高活性的NAD+-ME 及低活性的PEPCase,但夜間蘋果酸的累積量與長
期未加溫處理者並無明顯差異,因此推測長期加溫可能會改變蘭苗的代謝途徑。
相較於大白花栽培種,台灣阿媽具有較高含量的檸檬酸,與低含量的葡萄糖與果
糖,而且在生長箱每日14小時90 μmole m-2s-1照射下,台灣阿媽會增加類胡蘿蔔素的
累積,上述結果可能皆與台灣阿媽更耐逆境有關。
Temperature is one of the important environmental factors influencing the growth and
development of Phalaenopsis. This thesis examines the effect of short-term cool night
temperature in a growth chamber and long-term elevated temperature in a TaiSugar
Wusulin environmental-controlled greenhouse on the photosynthetic efficiency and
biochemical metabolism of different Phalaenopsis species, including aphrodite and large
white flower hybrids (TaiSugar H91-102 or H92-106). The results not only explain the
possible mechanisms for aphrodite having a higher stress tolerance than large white flower
hybrids, but also offer a practical option for orchid nurseries to improve temperature
conditions in regulating the spike emergence of Phalaenopsis.
After the mature plants were acclimated to different night temperature in the growth
chamber for 2 weeks, the stomatal conductance of aphrodite significantly increased under
a cool-night temperature (20 ºC), and an estimated 90% of the nocturnal accumulation
malate was evidently from ambient CO2. However, a higher night temperature (28 ºC)
reduced the stomatal conductance of aphrodite and resulted in almost 65% of the
synthesized malate being recycled from respiratory CO2. In contrast, in large white flower
hybrids, the difference in night temperature between 28 ºC and 20 ºC would not alter the
CO2 source for malate synthesis, and about 70% of the malate stored during the night was
recycled from respiratory CO2. Hence, Phalaenopsis aphrodite has a higher flexibility in
response to temperature variation than the large white flower hybrids. The chlorophyll
fluorescence analysis showed that a cool-night temperature decreased the maximum
quantum yield (Φp0) and slightly increased the minimal fluorescence (F0) of large white
flower hybrids, strongly implicating chronic photoinhibition. This result presumed that
large white flower hybrids are not suitable to be planted closely at a 20ºC night
temperature.
Regardless of the different night temperature in a growth chamber for 2 weeks, or at
an unelevated temperature in a TaiSugar Wusulin environmental-controlled greenhouse for
5
5 months, Phalaenopsis aphrodite and the large white flower hybrids significantly
exhibited the diurnal oscillation of net CO2 uptake, malate and starch levels, as well as the
activities of phosphoenolpyruvate carboxylase (EC4.1.1.31, PEPCase) and NAD+-malic
enzyme (EC1.1.1.39, NAD+-ME). These results clearly ascertained that Phalaenopsis is an
obligate crassulacean acid metabolism plant. As Phalaenopsis was treated at an elevated
temperature of 28ºC for 5 months, the reduction of effective quantum yield (Φp) and the
increase of non-photochemical quenching (qN) clearly indicated that the photosynthetic
system II of Phalaenopsis was partially inhibited. Moreover, Phalaenopsis exhibited high
NAD+-ME activity and low PEPCase activity during the night period, but the level of
nocturnal malate accumulation was not significantly different from that of Phalaenopsis
under long-term unelevated temperature treatment. Hence, it may be postulated that
Phalaenopsis might alter the metabolic pathway under a long-term elevated temperature
condition.
Compared to large white flower hybrids, Phalaenopsis aphrodite contains a high level
of citrate, a low amount of glucose and fructose, and a significant increase of carotenoids
accumulation under photosynthetically active radiation of 90 μmole m-2s-1 for 14 hours per
day in a growth chamber. These results possibly relate to Phalaenopsis aphrodite having
stress-tolerance.
目 錄
頁次
謝誌------------------------------------------------------------------------------------------ I
目錄------------------------------------------------------------------------------------------- Ⅱ
表目錄---------------------------------------------------------------------------------------- Ⅵ
圖目錄---------------------------------------------------------------------------------------- Ⅶ
縮寫表------------------------------------------------------------------------------------------ 1
中文摘要--------------------------------------------------------------------------------------- 3
英文摘要--------------------------------------------------------------------------------------- 4
第一章 前言
1.1 蝴蝶蘭簡介---------------------------------------------------------------------------- 6
1.2 文獻回顧-------------------------------------------------------------------------------- 7
1.2.1 景天酸代謝型態植物的特性--------------------------------------------------- 7
1.2.2 環境因子對景天酸代謝型態植物的影響------------------------------------ 8
1.2.2.1 溫度 (Temperature) ------------------------------------------------------ 8
1.2.2.2 光照 (Light) -------------------------------------------------------------- 10
1.2.2.3 溫度與光照的交感作用 (Crosstalk) --------------------------------- 12
1.2.3 景天酸代謝型態植物的碳源庫變化---------------------------------------- 12
1.2.4 光合作用簡介------------------------------------------------------------------ 14
1.2.4.1 光合作用------------------------------------------------------------------- 14
1.2.4.2 葉綠素螢光---------------------------------------------------------------- 15
1.3 研究動機與目的--------------------------------------------------------------------- 17
1.4 研究方向------------------------------------------------------------------------------ 17
III
第二章 材料與方法
2.1 實驗材料------------------------------------------------------------------------------ 19
2.2 實驗設備------------------------------------------------------------------------------ 19
2.3 實驗材料的處理條件--------------------------------------------------------------- 20
2.3.1 長期加溫與長期未加溫的效應---------------------------------------------- 20
2.3.2 短期夜間涼溫效應------------------------------------------------------------- 20
2.4 取樣------------------------------------------------------------------------------------ 20
2.5 分析項目------------------------------------------------------------------------------ 21
2.5.1 蝴蝶蘭植株生長情形---------------------------------------------------------- 21
2.5.2 光合作用效率分析------------------------------------------------------------- 22
2.5.2.1 葉綠素螢光分析---------------------------------------------------------- 22
2.5.2.2 氣體交換分析------------------------------------------------------------- 23
2.5.2.3 葉綠素組成及含量分析------------------------------------------------- 25
2.5.3 有機酸成份分析---------------------------------------------------------------- 26
2.5.3.1 有機酸的萃取------------------------------------------------------------- 26
2.5.3.2 有機酸成份的定量分析------------------------------------------------- 26
2.5.4 碳水化合物分析---------------------------------------------------------------- 30
2.5.4.1 可溶性醣的萃取---------------------------------------------------------- 30
2.5.4.2 醣類成份的分析---------------------------------------------------------- 32
2.5.4.3 澱粉含量分析------------------------------------------------------------- 34
2.5.5 酵素活性分析------------------------------------------------------------------- 36
2.5.5.1Phosphoenolpyruvate carboxylase (EC4.1.1.31) 之萃取與活性分析36
IV
2.5.5.1.1 酵素液的萃取-------------------------------------------------------- 36
2.5.5.1.2 酵素活性分析-------------------------------------------------------- 37
2.5.5.2 NAD+-malic enzyme (EC 1.1.1.39,NAD+-ME) 與NADP+- malic
enzyme (EC 1.1.1.40,NADP+- ME) 之萃取與活性分析--------- 38
2.5.5.2.1 NAD+-malic enzyme (EC 1.1.1.39) 與NADP+- malic enzyme
(EC 1.1.1.40) 酵素液的萃取-------------------------------------- 38
2.5.5.2.2 NAD+-malic enzyme (EC 1.1.1.39) 酵素活性分析------------ 39
2.5.5.2.3 NADP+- malic enzyme (EC 1.1.1.40) 酵素活性分析---------- 40
第三章 結果
3.1 不同品系蝴蝶蘭的生長特性------------------------------------------------------ 42
3.2 短期夜間涼溫對蝴蝶蘭生理生化性質的影響--------------------------------- 42
3.2.1 光合作用效率分析------------------------------------------------------------- 42
3.2.1.1 葉綠素螢光分析---------------------------------------------------------- 42
3.2.1.2 氣體交換分析------------------------------------------------------------- 43
3.2.2 葉綠素組成及含量分析------------------------------------------------------- 43
3.2.3 有機酸成份分析---------------------------------------------------------------- 44
3.2.4 碳水化合物成份分析---------------------------------------------------------- 45
3.2.5 酵素活性分析------------------------------------------------------------------- 46
3.3 長期加溫對蝴蝶蘭生理生化性質的影響--------------------------------------- 47
3.3.1 光合作用效率分析------------------------------------------------------------- 47
3.3.1.1 葉綠素螢光分析---------------------------------------------------------- 47
3.3.1.2 氣體交換分析------------------------------------------------------------- 47
3.3.2 葉綠素組成及含量分析------------------------------------------------------- 47
V
3.3.3 有機酸成份分析---------------------------------------------------------------- 47
3.3.4 碳水化合物成份分析---------------------------------------------------------- 48
3.3.5 酵素活性分析------------------------------------------------------------------- 49
第四章 討論
4-1 短期夜間涼溫對蝴蝶蘭生理生化性質的影響----------------------------------74
4-2 長期加溫對蝴蝶蘭生理生化性質的影響----------------------------------------77
4-3 生長箱與環控溫室對蝴蝶蘭苗生理生化特性的差別影響-------------------78
第五章 參考文獻--------------------------------------------------------------------------- 81
VI
表目錄
頁次
表一 短期夜間涼溫對不同品種蝴蝶蘭螢光參數值變化的影響----------------- 50
表二 短期夜間涼溫對不同品種蝴蝶蘭的色素組成及含量的影響-------------- 51
表三 短期夜間涼溫對不同蝴蝶蘭品種夜間累積蘋果酸、檸檬酸及相對夜
間回收CO2 成為蘋果酸百分比的影響---------------------------------------- 52
表四 長期加溫對不同品種蝴蝶蘭螢光參數值的影響---------------------------- 53
表五 長期加溫對不同品種蝴蝶蘭的色素組成及含量的影響-------------------- 54
表六 長期加溫對不同蝴蝶蘭品種夜間累積蘋果酸及檸檬酸變化情形-------- 55
VII
圖目錄
頁次
圖1 Z-scheme 為光合作用光反應中的電子傳遞途徑------------------------------- 56
圖2 葉綠素螢光由激發態下降至基態的路徑機制---------------------------------- 57
圖3 不同品種蝴蝶蘭的外觀------------------------------------------------------------- 58
圖4 葉綠素螢光參數之示意圖---------------------------------------------------------- 59
圖5 有機酸標準品的相對滯留時間位置圖------------------------------------------- 60
圖6 醣類標準品的相對滯留時間位置圖---------------------------------------------- 61
圖7 不同品種蝴蝶蘭葉部與根部的生長及葉重/根重比值的變化情形--------- 62
圖8 短期夜間涼溫對不同品種蝴蝶蘭在不同的光照度下相對電子傳遞速率的
影響------------------------------------------------------------------------------------- 63
圖9 短期夜間涼溫對不同品種蝴蝶蘭的氣孔導度與淨吸收CO2 速率日韻律變
化的影響------------------------------------------------------------------------------- 64
圖10 短期夜間涼溫對不同品種蝴蝶蘭的有機酸組成與含量日韻律變化的影響
---------------------------------------------------------------------------------------- 65
圖11 短期夜間涼溫對不同品種蝴蝶蘭的醣類組成及含量日韻律變化的影響 66
圖12 短期夜間涼溫對不同品種蝴蝶蘭澱粉含量日韻律變化的影響------------ 67
圖13 短期夜間涼溫對不同品種蝴蝶蘭的酵素活性日韻律變化的影響--------- 68
圖14 春夏季未加溫與秋冬季加溫處理對不同品種蝴蝶蘭淨吸收CO2 速率日韻
律變化的影響------------------------------------------------------------------------ 69
圖15 長期加溫對不同品種蝴蝶蘭的有機酸組成與含量日韻律變化的影響--- 70
VIII
圖16 長期加溫對不同品種蝴蝶蘭的可溶性醣組成與含量日韻律變化的影響-71
圖17 長期加溫對不同品種蝴蝶蘭的澱粉含量日韻律變化的影響-----------72
圖18 長期加溫對不同品種蝴蝶蘭的酵素活性日韻律變化的影響-----------73
王強、張其德、盧從明、匡廷云、李成荃 (2002) 超高產雜交稻不同生育
期的光合色素含量、淨光合速率和水分利用效率。26(6), 647。
王明吉、李哖 (1991) 光度對蝴蝶蘭小苗生長、開花及碳水化合物及葉片
酸度變化之影響。中國園藝。37(4), 290。
李哖、林菁敏 (1987) 蝴蝶蘭之花期調節。台中區農業改場特刊。27-44。
李哖 (1995) 蝴蝶蘭儲運前後處理對植株開花品質之影響。國科會專題研
究計畫 (NSC 83-0409-B002-045) 報告。16。
李哖、郭瑋君 (2000) 台灣蝴蝶蘭之光合作用。產學科技發展學術合作論
文集。11-18。
林菁敏、李哖 (1983) 溫度對蝴蝶蘭生長與開花的影響。中國園藝。29(4),
315。
林菁敏、李哖 (1988) 蝴蝶蘭葉面積之估算與溫度對葉片生長之影響。中
國園藝。34(1), 73-80。
柯勇 (2002) 植物生理學。藝軒圖書出版社。臺北。
莊育欣 (2001) 高溫乾燥逆境對Phaseolus vulgaris 與Phaseolus acutifolius
之光合作用及澱粉代謝的影響。國立清華大學碩士論文。
Avadhani, P.N., Goh, C.J., Rao, A.N. and Arditti, J. (1982) Carbon fixation in
orchids. In : Orchid Biology : Reviews and PerspectiveⅡ. (Arditti, J.,
ed), pp.173-193, Cornell Univ. Press, New York.
Bakrim, N., Brulfert, J., Vidal, J. and Chollet, R. (2001) Phosphoenolpyruvate
Carboxylase Kinase Is Controlled by a Similar Signaling Cascade in
CAM and C4 Plants. Biochemical and Biophysical Research
Communications. 286, 1158-1162.
Bernier, G., Kinet, J.M. and Sachs, R.M. (1977) The physiology of flowering.
The initiation of flower. Pp.106-112. CRC Press, Inc., Boca Raton,
Florida.
82
Bernier, G., Havelange, A., Houssa, C., Petitjean, A. and Lejeune, P. (1993)
Physiological signals that induce flowering. Plant Cell. 5, 1147-1155.
Behzadipour, M., Ratajczak, R., Faist, K., Pawlitschek, P., Trémoliéres, A.
and Kluge, M. (1998) Phenotypic adaptation of tonoplast fluidity to
growth temperature in the CAM plant Kalanchoë daigremontiana Ham.
et Per. is accompanied by changes in the membrane phospholipid and
protein composition. Journal of Membrane Biology. 166, 61-70.
Björkman, O. and Demming, B. (1987) Photon yield of O2 evolution and
chlorophyll fluorescence characteristics at 77K among vascular plants
for diverse origins. Planta. 170, 489-504.
Borland, A.M. and Griffiths, H. (1989) The regulation of citric acid
accumulation and carbon recycling during CAM in Ananas comosus.
Journal of Experimental Botany. 210, 53-60.
Borland, A.M., Griffiths, H., Maxwell, C., Fordham, M.C. and Broadmeadow,
M.S.J. (1996) CAM induction in Clusia minor L. during the transition
from wet to dry season in Trinidad:the role of organic acid speciation
and decarboxylation. Plant, Cell and Environment. 19, 655-664.
Borland, A.M. and Taybi, T. (2004) Synchronization of metabolic processes
in plants with crassulaceaen acid metabolism. Journal of Experimental
Botany. 55, 1255-1265.
Brunnhofer, H., Schaub, H. and Egle, K. (1968) Die Beziehung zwischen den
Veranderungen der Malate-und Starkekonzentrationen und dem CO2-
und O2-Gaswechsel bei Bryophyllum daigremontianum. Zeitschrift fur
Pflanzenphysiologie, 60, 12-18.
Buchanan-Bollig, I.C., Kluge, M. and Müller, D. (1984) Kinetic changes with
temperature of phosphoenolpyruvate carboxylase from a CAM plant.
Plant Cell Environment. 7, 63-70.
Callaway, T.R., Martin, S.A. Wampler, J.L., Hill, N.S. and Hill, G.M. (1997)
malate content of forage varieties commonly fed to cattle. Journal of
Dairy Science. 80, 1651-5.
Carter, P., Wilkins, M.B., Nimmo, H.G. and Fewson, C.A. (1995) Effects of
temperature on the activity of phosphoenolpyruvate carboxylsae and on
83
the control of CO2 fixation in Bryophyllum fedtschenkoi. Planta. 196,
375-380.
Chang, T.C. and Tsai, Y.F. (1986) Quantitative determination of starch in
plant storage tissues by starch degrading enzymes. J. Chin. Agri. Chem.
Soc. 24, 392-396.
Chen, L.S. and Nose, A. (2004) Day-Night Changes of Energy-rich
Compounds in CAM Species Utilizing Hexose and Starch. Annals of
Botany. 94, 449-455.
Chen, W.S., Liu, H.Y., Lin, Z.H., Yang, L. and Chen, W.H. (1994) Gibberellin
and temperature in fluence carbohydrate content and flowering in
Phalaenopsis. Physiologia plantarum. 90, 391-395.
Chu, C., Dai, Z., Ku, M.S.B. and Edwards, G.E. (1990) Introducion of
Crassulacean acid metabolism in the facultative halophyte
Mesembryanthemum crystallinum by abscisic acid. Plant physiology. 93,
1253-1260
Cushman, J.C. (2001) Crassulacean Acid Metabolism. A Plastic
Photosynthetic Adaptation to Arid Environments. Plant physiology. 127,
1439-1448.
Dieter, J.v.W., Nicole, A., Tobias, D. and Maik, Z. (2005) Welwitschia
mirabilis: CAM or not CAM-what is the answer? Functional Plant
Biology. 32, 389-395.
Dittrich, P. (1976) Nicotinamide adenine dinucleotide-specific“malic”enzyme
in Kalanchoë daigremontiana and other plants exhibiting Crassulacean
acid metabolism. Plant Physiol. 57, 310-314.
Dodd, A.N., Borland, A.M., Haslam, R.P., Griffiths, Howard. and Maxwell
Kate (2002) Crassulacean acid metabolism:plastic,fantastic. Journal of
Experimental Botany. 53, 569-580.
Endo, M. and Ikusima, I. (1989) Diurnal rhythm and characterics of
photosynthesis and respiration in the leaf and root of a phalaenopsis
plant. Plant Cell Physiol. 30, 43-47.
Franco, A.C., Ball, E. and Lüttge, U. (1992) Differential effects of drought
84
and light levels on accumlation of citric and malic acids during CAM in
Clusia. Plant, Cell and Environment. 15, 390-829.
Friemert, V., Heininger, D., Kluge, M. and Ziegler, H. (1988) Temperature
effects on malic-acid efflux from the vacuoles and on the carboxylation
pathways in Crassulacean acid metabolism plants. Planta. 174, 453-61.
Godbold, D.L., Horst, W.J., Collins, J.C., Thurman, D.A. and Marschner, H.
(1984) Accumulation of zinc and organic acids in roots of zinc tolerant
and non-tolerant ecotypes of Deschampsia caespitosa. Journal of Plant
Physiology. 116, 59-69.
Guo, W.J. (1999) A study on characteristics of photosynthesis in phalaenopsis.
Master Thesis. Dept. of Hort., National Taiwan University.
Guralnick, L.J. and Jackson, M.D. (2001) Theoccurrence and phylogenetics
of Crassulacean acid metabolism in the Portulacaceae. International
Journal of Plant Science. 162, 257-262.
Haag-Kerwer, A., Franco, A.C. and Luttge, U. (1992) The effect of
temperature and light on gas exchange and acid accumulation in the
C3-CAM plant Clusia minor L. Journal of Experimental Botany. 43,
345-352.
Haag-Kerwer, A., Grams, T.E.E., Olivares, E., Ball, E., Arndt, S., Popp, M.,
Medina E. and Lüttge, U. (1996) Comparative measurements of gas
exchange, acid accumulation and chlorophyll a fluorescence of different
species of Clusia showing C3-photosynthesis or crassulacean acid
metabolism (CAM) at the same field site in Venezuela. New Phytologist.
134, 215-226.
Haldimann, P. (2005) Growth at moderately elevated temperature alters the
physiological response of the photosynthetic apparatus to heat stress in
pea (Pisum sativum L.) leaves. Plant, Cell and Environment. 28,
302-317.
Hipkin, M.F. and Baker, N.R. (1986) Photosynthesis energy transduction:a
practical approach (IRL press Inc.)
Hisamatsu, T., Sugiyama, Y., Kubota, S. and Koshioka, M. (2001) Delaying
anthesis by dark treatment in Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66,
169-174.
85
Honda, H., Akagi, H. and Shimada, H. (2000) An isozyme of the
NADP-malic enzyme of a CAM plant, Aloe arborescens, with variation
on conservative amino acid residues. GENE. 243, 85-92.
Israel, A. A. and Nobel, P.S. (1995) Growth temperature versus CO2 uptake,
Rubisco and PEPCase activities, and enzyme high-temperature
sensitivities for a CAM plant. Plant Physiol.Biochem. 33, 345-351.
Kenyon, W.H., Holaday, A.S. and Black, C. (1981) Diurnal Changes in
Metabolite Levels AND Crassulacean acid metabolism in Kalanchoë
daigremontiana Leaves. Plant Physiol. 68, 1002-1007.
Kluge, M. and Osmond, B. (1973) Studies on PEP-carboxylase and other
enzymes involved in Crassulacean acid metabolism of Bryophyllum
tubiflorum and Sedum praealtum. Z. Pflanzenphysiol. 66, 97-105.
Kluge, M. and Ting, I.P. (1978) Crassulacean acid metabolism Analysis of an
ecological adaptation. Springer/Verlag Berlin Heidelberg, New York.
Knauft, R.L. and Arditti, J. (1969) Partial identification of dark 14CO2 fixation
products in leaves of Cattleya (Orchidaceae). New Phytologist. 68,
657-661.
Kondo, A., Nose, A., Yuasa, H. and Ueno, O. (2000) Species variation in the
intracellular localization of pyruvate, Pi dikinase in leaves of
crassulacean-acid-metabolism plants: an immunogold
electron-microscope study. Planta. 610, 611-21.
Krause, G.H. and Weis, E. (1992) Chlorophyll fluorescence and
photosynthesis: The basis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42,
313-349.
Lazar, D. (1999) Chlorophyll a fluorescence induction. Biochim. Biophys.
Acta 1412, 1-28.
Lee, N. and Lee, C.H. (1996) Changes in carbohydrates in Phalaenopsis
during flower induction and inflorescence Development. J. Chinese Soc.
Hort. Sci. 42, 262-275.
Lee, N. and Lin, G.M. (1984) Effect of temperature on growth and flowering
86
of a Phalaenopsis white hybrid. J. Chinese Soc. Hort. Sci. 30, 223-232.
Lee, N. and Lin, G.M. (1987) Regulating flowering in Phalaenopsis. Proc.
Symposium on Forcing Culture of Hort. Crops. Taichung Agr.
Improv.Station Special Publication. 10, 27-44. (Taiwan)
Levy, Y.Y. and Dean, C. (1998) The transition to flowering. Plant Cell. 10,
1973-1989.
Littlejohn, R.O. and Ku, M.S.B. (1985) light and temperature regulation of
early morning Crassulacean acid metabolism in Opuntia erinacea var
Columbiana (Griffiths) L.Benson. Plant physiol. 77, 489-491.
Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids. In METHODS IN
ENZYMOLOGY, pp.350-382, Academic Press, Inc.
Lin, G.M. and Lee, N. (1988) Leaf area estimation and the effect of
temperature on the growth of phalaenopsis leaves. J.Chinese Soc. Hort.
Sci. 34, 73-80.
Lin, Y.Z. and Lee, N. (1998) Light Requirement of Phalaenopsis during Prior
To and Following Cool-Temperature Forcing. J.Chinese Soc. Hort. Sci.
44, 463-478.
Londers, E., Ceusters, j., Vervaeke, I., Deroose, R. and DeProft, M.P. (2005)
Organic acid analysis and plant water status of two Aechmed cultivars
grown under greenhouse conditions:implications on leaf quality.
Scientia Horticulturae. 105, 249-262.
Lüttge, U. (1988) Day-night changes of citric-acid levels in crassulaceaen
acid metabolism: phenomenon and ecophysiological significance. Plant,
Cell and Environment. 11, 445-51.
Lüttge, U. (1990) Nocturnal citrate accumulation and its response to
environmental stress in the CAM plant Kalanchoe pinnata (Lam.) Pers.
Plant, Cell and Environment. 13, 977-982.
Lüttge, U. (2004) Ecophysiology of Crassulaceaen acid metabolism. Annals
of Botany. 93, 629-652.
Medina, E., Popp, M., Olivares, E., Janett, H. P. and Lüttge, U. (1993) Daily
87
fluctuations of titratable acidity, content of organic acids (malate and
citrate) and soluble sugars of varieties and wild relatives of Ananas
comosus L. growing under natural tropical conditions. Plant, Cell and
Environment. 16, 55-63.
Medina, E., Ziegler, H., Lüttge, U., Trimborn, P. and Francisco, M. (1994)
Light conditions during growth as revealed by δ13C values of leaves of
primitive varieties of Ananas comosus, an obligate CAM species.
Functional Ecology. 8, 298-305.
van Mieghem, F., Brettel, K., Hillmann, B., Kamlowski, A., Rutherford, A.W.
and Schlodder, E. (1995) Charge recombination reactions in
photosystemⅡ.1.Yields, recombination pathway, and kinetics of the
primary pair. Biochemistry. 34, 4798-4813.
Neales, T.F. and Hew, C.S. (1975) Two types of carbon fixation in tropical
orchids. Planta. 123, 303-306.
Nobel, P.S. and Hartsock, T.L. (1983) Relationships between
photosynthetically active radiation, nocturnal acid metabolism, and CO2
uptake for a Crassulacean acid metabolism plant, Opuntia ficus-indica.
Physiol. Plant. 71, 71-75.
Nobel, P.S. and Hartsock, T.L. (1984) Physiological responses of Opuntia
ficus-indica to growth temperature. Plant Physiol. 60, 98-105.
Northen, R.T. (1973) An environment for growing.Amer. Orchid Soc. Bull. 42,
484-491.
Osmond, C.B. (1978) Crassulacean acid metabolism:a curiosity in context.
Annu. Rev. Plant Physiol. 29, 379-414.
Osmond, C.B. and Grace, S.C. (1995) Perspectives on photoinhibition and
photorespiration in the field: quintessential inefficiencies of the light and
dark reactions of photosynthesis? Journal of Experimental Botany. 46,
1351-1362.
Papahadjopoulos, D., Jacobsen, K., Nir, S. and Isac, T. (1973) Phase
transition in phospholipid vesicles. Fluorescence polarization and
permeability measurements concerning the effect of temperature and
cholesterol. Biochim Biophys Acta. 311, 330-348.
88
Popp, M., Kramer, D., Lee, H.S., Diaz, M., Ziegler, H. and Lüttge, U. (1987)
Crassulaceaen acid metabolism in tropical dicotyledonous trees of the
genus Clusia. Trees. 1, 238-47.
Popp, M., Janett, H.P., Lüttge,U. and Medina, E. (2003) Metabolite gradients
and carbohydrate translocation in rosette leaves of CAM and C3
bromeliads. New Phytologist. 157, 649-656.
Pyankov, V.I., Voznesenskaya, E.V., Kuz’min, A.N., Ku, M.S.B., Ganko, E.,
Franceschi, V.R., Black, C.C. and Edwards, G.E. (2000) Occurrence of
C3 and C4 photosynthesis in cotyledons and leaves of salsola species
(chenopodiaceae). Photosynthesis Research. 63, 69-84.
Roberts, A., Borland, A.M., Maxwell, K. and Griffiths, H. (1998)
Ecophysiology of the C3-CAM intermediate Clusia minor L. in
Trinidad:seasonal and short-term photosynthetic characteristics of sun
and shade leaves. Joural of Experimental Botany. 49, 1536-1573
Rohacek, K. and Bartak, M. (1999) Technique of the modulated chlorophyll
fluorescence: basic concepts,useful parameters,and some applications.
Photosynthetica. 37, 339-363.
Sakanishi, Y., Imanishi, H. and Ishida, G. (1980) Effect of temperature on
growth and flowering of phalaenopsi amabilis. Bull. Univ. Osaka Pref.,
Ser. B. 32, 1-9.
Schöttelndreier, M., Norddahl, M.M., Ström, L. and Falkengren-grerup, U.
(2001) Organic acid exudation by wild herbs in response to elevated AI
Concentrations. Annals of Botany. 87, 769-775.
Strasser, R.J., Srivastava, A.M. and Michael, T. (2000) The fluorescence
transient as a tool to characterize and screen photosynthetic samples.
Probing Photosynthesis: Mechanism, Regulation and Adaptation (Yunus,
M., Pathre, U. and P.Mohanty ed), pp.445-483, Taylor and Francis,
London New York.
Taiz, L. and Zeiger, E. (2002) There are four major groups of flavonoids.
Plant Physiology. pp.294, Sinauer Associates, Inc., USA.
Victoriano, V. and Miguel, A.B. (2004) Biosynthesis of L-ascorbic acid in
plants: new pathways for an old antioxidant. TRENDS in Plant Science.
9, 574-577.
89
Wang, Y.T. (1995) Phalaenopsis orchid light requirement during the induction
of spiking. HortScience. 30, 59-61.
Wang, H.L., Liu, L.F. and Su, J.C. (1999) Effect of sorbitol induced osmotic
stress on the changes of carbohydrate and free amino acid pools in sweet
potato cell suspension cultures. Bot. Bull. Acad. Sin. 40, 219-225.
Winter, K. and Smith, J.A.C. (1996) Crassulacean acid metabolism:current
status and perspectives. In : Crassulaceaen acid metabolism.
Biochemistry, Ecophysiology and Evolution (Winter, K and Smith,
J.A.C., ed), pp. 389-420, Springer/Verlag Berlin Heidelberg, New York.
Yang, X.E., Baligar, V.C., Foster, J.C. and Martens, D.C. (1997)
Accumulation and transport of nickel in relation to organic acids in
ryegrass and maize with different nickel levels. Plant and Soil. 196,
271-276.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top