跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許家龍
研究生(外文):Chia-Lung Hsu
論文名稱:一個以代用模型與時間序列預測值來搜尋有效點的演算法
論文名稱(外文):Searching E®ective Points by SurrogateModels and Time Series Predictions
指導教授:王偉仲陳瑞彬陳瑞彬引用關係
指導教授(外文):Weichung WangRay-Bing Chen
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:39
中文關鍵詞:均勻設計基底反應曲面法自回歸過程最佳化目標區域影像表示
外文關鍵詞:optimizationuniform designA basis-based response surface methodauto-regressionregion of interestimage representation.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是提出一個當反應函數為未知或難以定義時,依然能有效率地尋找有效點的演算法,其中有效點為其所對應之反應值屬於特定的目標區域內。在此目標區域可以是反應
函數之極值,有界區間,正值,等等。不同於一般對於反應函數的假設,在此我們視反應值的取得為一演化過程。因此,我們考慮用自回歸過程來配適這個演化過程。為了尋找有效點,我們利用當時的反應值以及來自自回歸過程所得到的預測值分別構成的兩個代用曲面,並分別從這兩個曲面上選取可能的有效點。最後我們還利用演化過程的收斂條件來提高新演算法的效率。在本論文中我們展示數個模擬實驗的結果和兩個從動態系統中尋找正Lyapunov指數的實際例子。從這些結果顯示出我們的演算法是有效率的且實用的。
We develop an algorithm to find so-called effective points
$\mathbf{x}\in\mathcal{R}^n$ such that the corresponding responses
$f(\mathbf{x})\in\mathcal{R}$ belong to a specific region of
interest. Examples of a region of interest include extreme values,
bounded intervals, positivity, and others. Here the responses are
obtained iteratively with respect to the evolution $t$, and these
evolution processes are fitted by auto-regressive processes. To find
the effective points, the true yet unknown response surface is
approximated by a surrogate model. Then possible effective points
are selected from two surrogate surfaces, which are constructed
based on the predictions of the AR processes and the current values
of the evolution processes respectively. The convergency criteria
for evolution processes are also used here for improving the
efficiency of our novel algorithm. Several simulations and two real
examples for finding positive Lyapunov exponents of a dynamical
system are demonstrated. Computational results show that the novel
algorithms is efficient and practical.
1 Introduction 1
2 The New Algorithm 2
2.1 The Basis-Based Response Surface Method . . . . . . . . . . . . . . . . 2
2.2 New Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Computing Experiments 8
3.1 The Lyapunov Exponents . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The simulation cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Experimental Results 13
4.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 The results for the two experiments of L.E. . . . . . . . . . . . . . . . . 16
4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Conclusion 30
A Appendix: The ‾gure of evolution processes for Lyaounov Exponents 32
References 38
[1] F. Bergeaud and S. Mallat (1995). Matching pursuit of images. 1995 International
Conference on Image Processing, 1, 53-56.
[2] G. E. P. Box and K. B. Wilson (1951). On the experimental attainment of optimum
condition. Journal of the Royal Statistical Society, Ser. B., 13, 1-45.
[3] R.-B. Chen, W. Wang and F. Tsai (2006). A basis-based response surface method
for computer experiment optimization. Technical report, Department of Applied
Mathematics and Institute of Statistics, National University of Kaohsiung.
[4] K. T. Fang, D. K. J. Lin, P. Winker and Y. Zhang (2000). Uniform design: theory
and application. Technometrics, 42, 237-248.
[5] B. MacLenna (1991). Gabor representation of spatiotemporal visual images. Tech-
nical report CS-91-144.
[6] S. Mallat and Z. Zhang (1993). Matching pursuit with time-frequency dictionaries.
IEEE Transactions on Signal Processing, 41, 3397-3415
[7] T. S. Parker and L. O. Chua (1989). Practical numerical algorithms for chaotic
systems. Springer-Verlag. New York.
[8] J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn (1989). Design and analysis
of computer experiments. Statistical Science, 4(4), 409-435.
[9] W. Wang and R.-B. Chen (2004). Basis representation methodology for response
surfaces. Technical report, Department of Applied Mathematics and Institute of
Statistics, National University of Kaohsiung.
[10] W. Wang, T.-M. Hwang, C. Juang, J. Juang, C.-Y. Liu and W.-W. Lin (2001).
Chaotic behaviors of bistable laser diodes and its application in synchronization of
optical communication. Japanese Journal of Applied Physics, 40(10), 5914-5919.
[11] K. F. C. Yiu, S.Wang, K. L. Teo and A. C. Tsoi (2001). Nonlinear system modeling
via knot-optimizing B-spline networks, IEEE Transactions on Neural Networks,
12, (5) pp.1013-1022.HI
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top