|
[1] Atkinson, A. C. and Fedorov, V. V. (1975). Optimal design: experiments for dis- criminating between several models. Biometrika, 62, 289-304. [2] Atkinson, A. C. and Donev, A. N. (1992). Optimum Experimental Designs, Oxford University Press, Oxford. [3] Atwood, C. L. (1969). Optimal and e±cient designs for experiments. Ann. Math. Statist., 40, 1570-1602. [4] Brown, L. D. and Wong, W. K. (2000). An algorithm construction of optimal mini- max designs for heterscedastic linear models. J. Statist. Plann. Inference , 85, 103- 114. [5] Fedorov, V. V. (1972). Theory of Optimal Experiments. Translated and edited by Studden, W. J. and Klimko, E. M., Academic Press, New York. [6] Powell, M. J. D. (1964). An e±cient method for ‾nding the minimum of a function of several variables without calculating derivatives. Comput. J., 7, 303-307. [7] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numer- ical Recipes in C: The Art of Scienti‾c Computing, 2nd ed. Cambridge University Press, Cambridge. [8] Vanderplaats, G. N. (1984). Numerical Optimization Techniques for Engineering Design: with Applications. McGraw-Hill. Boston University Press, Boston. [9] Wong, W. K. (1992). A uni‾ed approach to the construction of mini-max designs. Biometrika, 79, 611-620. [10] Wong, W. K. (1993). Heteroscedastic G-optimal designs. J. R. Statist. Soc. B, 55 , 871-880. [11] Wong, W. K. (1994). Multifactor G-optimal designs with heteroscedastic errors. J. Statist. Plann. Inference, 40, 127-133. [12] Wong, W. K. (1998). Optimal minimax designs for prediction in heteroscedastic models. J. Statist. Plann. Inference, 69, 371-383.
|