跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昆育
研究生(外文):Kun-Yu Li
論文名稱:三種大中取小準則下之最適設計
論文名稱(外文):Optimal Minimax Designs for Three Different Criteria
指導教授:陳瑞彬陳瑞彬引用關係
指導教授(外文):Ray-Bing Chen
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:32
中文關鍵詞:Powell's 方法異方差模型近似設計黃金比例方法
外文關鍵詞:Powell's methodApproximate designGolden Section methodHeteroscedastic model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們討論異方差模型中大中取小的最適設計。此論文的目的為比較三個大中取小準則。首先,根據Wong(1998)的演算法,我們先求得針對這三個不同準則下的最適設計,並且比較它們的相對效率。最後,對於簡單線性模型,在一些簡單的條件下,我們證明這三個大中取小的最適設計是相等的。
In this thesis, we are interested in finding optimal minimax designs for heteroscedastic model. The goal of this thesis is to study three minimax criteria. Here for different efficiency functions, the corresponding numerically optimal minimax designs are computed according to the generating algorithm of Wong (1998), and then their relative efficiencies are compared. Finally for simple linear model, under some simple conditions, we show these three types of optimal minimax designs are equivalent.
1 Introduction 1
2 Equivalence theorem and generating algorithm for optimal minimax
designs 3
2.1 Equivalence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Generating algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Optimal minimax designs for simple linear model 7
3.1 Numerically optimal minimax designs . . . . . . . . . . . . . . . . . . . . 8
3.2 Symmetric convex e±ciency function . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Symmetric interval . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Extrapolation interval . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Quadratic and cubic models 18
4.1 Quadratic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Cubic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Conclusion 21
A Appendix 24
A.1 The Figures of ci(x; ¹¤; ¼¤), i = 1; 2; 3. . . . . . . . . . . . . . . . . . . . 24
A.1.1 The simple liner model with ¸(x) = x + 5. . . . . . . . . . . . . . 24
A.1.2 The simple liner model with ¸(x) = exp(¡5x2). . . . . . . . . . . 25
A.1.3 The simple liner model with ¸(x) = 0:5x2 + 1. . . . . . . . . . . . 26
A.1.4 The quadratic model with ¸(x) = 0:5x2 + 1. . . . . . . . . . . . . 27
A.1.5 The quadratic model with ¸(x) = exp(x2). . . . . . . . . . . . . . 28
A.1.6 The cubic model with ¸(x) = 0:5x2 + 1. . . . . . . . . . . . . . . 29
A.2 Proof of Theorem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.3 Proof of Theorem 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References 32
[1] Atkinson, A. C. and Fedorov, V. V. (1975). Optimal design: experiments for dis-
criminating between several models. Biometrika, 62, 289-304.
[2] Atkinson, A. C. and Donev, A. N. (1992). Optimum Experimental Designs, Oxford
University Press, Oxford.
[3] Atwood, C. L. (1969). Optimal and e±cient designs for experiments. Ann. Math.
Statist., 40, 1570-1602.
[4] Brown, L. D. and Wong, W. K. (2000). An algorithm construction of optimal mini-
max designs for heterscedastic linear models. J. Statist. Plann. Inference , 85, 103-
114.
[5] Fedorov, V. V. (1972). Theory of Optimal Experiments. Translated and edited by
Studden, W. J. and Klimko, E. M., Academic Press, New York.
[6] Powell, M. J. D. (1964). An e±cient method for ‾nding the minimum of a function
of several variables without calculating derivatives. Comput. J., 7, 303-307.
[7] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numer-
ical Recipes in C: The Art of Scienti‾c Computing, 2nd ed. Cambridge University
Press, Cambridge.
[8] Vanderplaats, G. N. (1984). Numerical Optimization Techniques for Engineering
Design: with Applications. McGraw-Hill. Boston University Press, Boston.
[9] Wong, W. K. (1992). A uni‾ed approach to the construction of mini-max designs.
Biometrika, 79, 611-620.
[10] Wong, W. K. (1993). Heteroscedastic G-optimal designs. J. R. Statist. Soc. B, 55 ,
871-880.
[11] Wong, W. K. (1994). Multifactor G-optimal designs with heteroscedastic errors. J.
Statist. Plann. Inference, 40, 127-133.
[12] Wong, W. K. (1998). Optimal minimax designs for prediction in heteroscedastic
models. J. Statist. Plann. Inference, 69, 371-383.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top