|
1. Arellano-Valle, R.B., Gomez, H.W. and Quintana, F.A. (2004). A new class of skew-normal distributions. Commun. Statist.-Theory Meth. 33, 1975-1991. 2. Arnold, B.C. and Beaver, R.J. (2000). The skew-Cauchy distribution. Statist. & Prob. Lett. 49, 285-290. 3. Arnold, B.C. and Lin, G.-D. (2004). Characterizations of the skew-normal and generalized chi distributions. Sankhya 66, 593-606. 4. Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12, 171-178. 5. Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica 46, 199-208. 6. Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. Roy. Statist. Soc. B 61, 579-602. 7. Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83, 715-726. 8. Chiogna, M. (1998). Some results on the scalar skew-normal distribution. J. Ital. Statist. Soc. 7,1-13. 9. Genton, M.G., He, L. and Liu, X. (2001). Moments of skew-normal random vectors and their quadratic forms. Statist. & Prob. Lett. 51, 319-325. 10. Gupta, A.K. (2003). Multivariate skew t-distribution. Statistics 37, 359-363. 11. Gupta, A.K. and Chang, F.-C. (2003). Multivariate skew-symmetric distributions. Appl. Math. Lett. 16, 643-646. 12. Gupta, A.K., Chang, F.-C. and Huang, W.-J. (2002). Some skew-symmetric models. Random Oper. and Stoch. Equ. 10, 133-140. 13. Gupta, A.K., Gonzalez-Farias, G., and Dominguez-Molina, J.A. (2004a). A multivariate skew normal distribution. J. Multi. Anal. 89, 181-190. 14. Gupta, A.K. and Huang, W.-J. (2002). Quadratic forms in skew normal variates. J. Math. Anal. Appl. 273, 558-564. 15. Gupta, A.K. and Kollo, T. (2003). Density expansions based on the multivariate skew normal distribution. Sankhya 65, 821-835. 16. Gupta, A.K., Nguyen, T.T. and Sanqui, J.A.T. (2004b). Characterization of the skew-normal distribution. Ann. Inst. Statist. Math. 56, 351-360. 17. Gupta, R.C. and Brown, N. (2001). Reliability studies of the skew-normal distribution and its application to a strength-stress model. Commun. Statist.-Theory Meth. 30, 2427-2445. 18. Henze, N. (1986). A probabilistic representation of the `skew-normal' distribution. Scand. J. Statist. 13, 271-275. 19. Horn, R.A. and Johnson, C.R. (1996). Matrix Analysis. Cambridge University Press, Cambridge. 20. Huang, W.-J. and Chen, Y.-H. (2006). Quadratic forms of multivariate skew normal-symmetric distributions. Statist. & Prob. Lett. 76, 871-879. 21. Huang, W.-J., Huang, Y.-N. and Lai, C.-L. (2005). Characterizations of distributions based on certain powers of random variables. J. Chinese Statist. Assoc. 43,423-432. 22. Loperfido, N. (2001). Quadratic forms of skew-normal random vectors. Statist. & Prob. Lett. 54, 381-387. 23. Loperfido, N. (2002). Statistical implications of selectively reported inferential results. Statist. & Prob. Lett. 56, 13-22. 24. Nadarajah, S. and Kotz, S. (2003). Skewed distributions generated by the normal kernel. Statist. & Prob. Lett. 65, 269-277. 25. Wang, J., Boyer, J. and Genton, M.G. (2004a). A skew-symmetric representation of multivariate distributions. Statist. Sinica 14, 1259-1270. 26. Wang, J., Boyer, J. and Genton, M.G. (2004b). A note on an equivalence between chi-square and generalized skew-normal distributions. Statist. & Prob. Lett. 66, 395-398. 27. Zacks, S. (1981). Parametric Statistical Inference. Basic Theory and Modern Approaches. Pergamon Press, Oxford.
|