|
[1] Balkin, S. D. and Lin, D. K. J. (2000). Aneural network approach to response surface methodology. Commun. Statist.-theory Meth., 29, 2215- 2227. [2] Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum condidtion. Journal of the Royal Statistical Socienty, Ser. B., 13: 1-45. [3] Chen, R. B., Wang, W. and Tsai, F. (2006). A Basis-based Response Surface Method for Computer Experiment Optimization. Techincal report, Institute of Statistics and Department of Applied Math., National University of Kaohsiung. [4] Fang, K. T., Ma, C. X. and Mukerjee, R. (2002a). Uniformity in frational factorials. In: Fang, K. T., Hickernell, F. J., Niederreiter, H. (eds.), Markov Chain and Quasi- Monte Carlo Methods in Scienti‾c Computing. Springer, Berlin, 232 - 241. [5] Fang, K. T., Ma, C. X., Winker, P. (2002b). Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform design. Math Comput., 71, 275-296. [6] Koehler, J. R. and Owen, A. B. (1996). Computer experiments. In: S. Ghosh and C. R. Rao editors, Handbook of Statistics, 13, 261-308. [7] Kolda, T. G., Lewis, R. M. and Torczon, V. (2003). Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Review, 45(3): 385-482. [8] Parker T. S. and Chua L. O. (1989). Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag. [9] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statistical Science, 4(4): 409 - 435. [10] Ste��en, C. J. Jr. (2002). Response Surface Modeling of Combined-Cycle Propul- sion Components Using Computational Fluid Dynamics. AIAA Pa- per No. 2002- 0542. [11] Wang, W., Hwang, T.-M., Juang, C., Juang, J., Liu, C.-Y. and Lin, W.-W. (2001). Chaotic Behaviors of Bistable Laser Diodes and Its Application in of Optical Communication. Japanese Journal of Applied Physics, 40(10): 5914- 5919.Synchronization
|