跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李順昌
研究生(外文):Shun-Chang Li
論文名稱:三族氮化物之蕭特基接面內部增益研究
論文名稱(外文):Internal gain study of the III-N Schottky contact
指導教授:藍文厚
指導教授(外文):Wen-How LAN
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:金屬有機氣相沉積溅鍍金半金光響應度內部增益特徵接觸電阻持續光電流傳導衰減時間常數捕抓能障高度
外文關鍵詞:MOCVDsputterMSMresponsivityinternal gainspecific contact resistivityPPCdecay time constantcapture barrier height.
相關次數:
  • 被引用被引用:5
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要藉由表面經處理的金屬有機氣相沉積(MOCVD)氮化鎵薄膜及以溅鍍方式成長的氮化鎵薄膜製成之金半金光偵測器(MSM photodetectors)去研究缺陷對光響應度(responsivity)及內部增益(internal gain)的影響,並利用文獻中兩種提出來解釋內部增益現象的理論去模擬逼近,證實經處理之樣品的確有較高的光響應度(responsivity)及內部增益(internal gain),並且各樣品的模擬結果皆與光傳導增益(photoconductive gain)理論趨勢一致。此外,經由特徵接觸電阻(specific contact resisitivity) ρc對溫度T的關係之量測,得知表面經處理之樣品傳輸機制為場發射(Field Emission)模式,即為穿透機制(tunneling)。最後對溅鍍氮化鎵薄膜經偏壓一段時間後,其在去除偏壓後的反向電流衰減現象利用持續光電流傳導(PPC)衰減的理論關係式加以模擬,得知其衰減時間常數(decay time constant)τ隨溫度T上升而下降,且由τ對T之關係得捕抓能障高度(capture barrier height)Ecapture約為0.4eV。
In the dissertation we studied the responsivity and the internal gain of the GaN MSM(Metal-Semiconductor-Metal) photodetectors with various surface treatments. We also utilized the two theories in order to explain internal gain mechanism proposed by the past references to fit the results of our responsivity measurement. It showed that the photodetectors with treated surfaces had larger responsivity and internal gain and the fitted results of them are corresponsive to the photoconductive gain theory. Besides, the current transport mechanisms are field emission (tunneling) according to the measurement of the specific contact resisitivity value under various temperatures. Finally, we measured and discussed about the reverse dark current decay of the sputtered GaN MSM photodetectors while the applied constant bias was removed. Furthermore, we utilized the proposed function of the PPC (persistent photoconductivity) current decay to fit the curve of the reverse dark current decay and it exhibited excellent fitting results and the decay time constant τ reduced as the temperature T increased. Therefore, according to the relation of the τ versus T, the capture barrier height Ecapture is around 0.4eV.
目錄
摘要 (中文)……………………………………………………………………………I
Abstract (in English) ………………………………………………………………II
致謝………………………………………………………………………………………III
目錄………………………………………………………………………………………IV
表目錄…………………………………………………………………………………VIII
圖目錄……………………………………………………………………………………IX
第一章 介紹與背景………………………………………………………………………1
參考資料……………………………………………………………………………………4
第二章 基本理論………………………………………………………………………6
2.1 金屬半導體接觸…………………………………………………………………6
2.1.1 金屬半導體接觸理論…………………………………………………………6
2.1.2 接觸電阻………………………………………………………………………7
2.2 金半金(Metal-semiconductor-Metal;MSM)光偵測器…………………………9
2.2.1 基本操作原理…………………………………………………………………9
2.2.2 電極幾何形狀………………………………………………………………10
2.2.3 暗電流(dark current)………………………………………………………11
2.2.4 光響應度與量子效率(responsivity and quantum efficiency) ………12
2.3 內部增益理論(internal gain) -J.C.C.理論…………………………………14
2.4內部增益理論(internal gain)–O.K.理論……………………………………18
2.5 內部增益理論比較與說明………………………………………………………19
2.6缺陷(defects)簡介………………………………………………………………21
參考資料……………………………………………………………………………………34
第三章 各類氮化鎵金半金光偵測器之光響應度………………………………36
3.1 氮化鎵金半金光偵測器光響應度之量測………………………………………36
3.1.1 連續暗電流量測及照光後之光電流量測…………………………………36
3.1.2 光響應度量測之步驟………………………………………………………37
3.2 單純MOCVD氮化鎵薄膜金半金光偵測器之光響應度……………………………38
3.3單純濺鍍氮化鎵薄膜金半金光偵測器之光響應度………………………………39
3.4 濺鍍氮化鎵薄膜於MOCVD氮化鎵薄膜與氬氣轟擊MOCVD氮化鎵薄膜表面的金半
金光偵測器之光響應度…………………………………………………………40
參考資料……………………………………………………………………………………53
第四章 光響應度之理論逼近………………………………………………………54
4.1理論模擬介紹………………………………………………………………………54
4.2光響應度之理論逼近……………………………………………………………55
參考資料……………………………………………………………………………………62
第五章 以接觸電阻與溫度關係檢驗電流傳輸機制……………………………63
5.1 環型傳輸線(CTLM)的簡介………………………………………………………63
5.2 電流傳輸機制之檢驗…………………………………………………………64
參考資料……………………………………………………………………………………67
第六章 溅鍍氮化鎵持續暗電流之討論……………………………………………68
6.1 溅鍍氮化鎵金半金暗電流持續現象簡介……………………………………68
6.2 溅鍍氮化鎵金半金暗電流持續現象…………………………………………68
參考資料……………………………………………………………………………………77
第七章 結論與未來實驗………………………………………………………………78
附錄一 金半金的電極材料與其製造………………………………………………80
附錄1.1 簡介…………………………………………………………………………80
附錄1.2 製程步驟……………………………………………………………………81
附錄1.3電極材料之比較……………………………………………………………83
參考資料……………………………………………………………………………………85
附錄二 濺鍍氮化鎵薄膜的製造…………………………………………………86
附錄2.1 簡介………………………………………………………………………86
附錄2.1.1 濺鍍裝置……………………………………………………………86
附錄2.1.2 氮化鎵之濺鍍的簡介………………………………………………86
附錄2.2 濺鍍氮化鎵製作流程……………………………………………………88
附錄2.3溅鍍氮化鎵的條件之建立與過程討論……………………………………89
附錄2.4 濺鍍氮化鎵薄膜的熱退火………………………………………………92
附錄2.5 穿透光譜量測……………………………………………………………93
附錄2.6 結論………………………………………………………………………94
參考資料…………………………………………………………………………………108
附錄三 光傳導的增益(photoconductive gain)理論推導…………………110
參考資料…………………………………………………………………………………112
附錄四 Matlab 程式…………………………………………………………………113
第一章
[1] S.J. Pearton, J. C. Zopler, R. J. Shul and F. Ren,J. Appl. Phys., Vol. 86, No. 1,1 July 1999,1.
[2] Yan-Kuin Su, Fuh-Shyang Juang,and Min-Homg Chen, Jpn. J. Appl. Phys. Vol. 42(2003) pp.2257-2259.
[3] E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Munoz and F. Cusso Semicond. Sci. Technol. 13 (1998) 1042
[4] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, "High performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN,"Appl. Phys. Lett., vol. 75, pp. 247-249, July 1999
[5] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. Asif Khan, D. Kuksenkov, and
H. Temkin, Appl. Phys. Lett. 71, 2334, 1997.
[6] Q. Chen, J.W. Yang, et al., Appl. Phys. Lett. 70(17), 28 Appril 1997, 2277
[7] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys. 83, 6148 (1998).
[8] D. G. Parker and P. G. Say,"Indium tin oxide/GaAs photodiodes for millimetric-wave application,"Eletron. Lett,vol. 22,pp1266-1267,1988.
[9] E. Monroy , F. Calle, E. Munoz, and F. Omnes, Phys. Status Solidi A 176, 141 (1999).
[10] E. Monroy, F. Calle, E. Munoz, and F. Omnes, Appl. Phys. Lett. 74 , 3401 (1999).
[11] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. 70 , 1992 (1997).
[12] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. Asif Khan, N. Pala, M. Shur, and R. Gaska, Appl. Phys. Lett. 77, 863 (2000).
[13] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. 72 , 542 (1998).
[14] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, Appl. Phys. Lett. 74 , 762 (1999).
[15] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar,and M. Asif Khan, Appl. Phys. Lett. 70 , 2277 (1997).
[16] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman Appl. Phys. Lett. 79, 1417(2001)
[17] J.K. Sheu, C.J. Kao, M.L. Lee, W.C. Lai. , et al., Journal of Electronic Material, Vol. 32., No. 5 ,2003, 400.
[18] S.J. Chang, M. L.Lee, J. K. Sheu , et al.,IEEE ELECTRON DEVICE LTTERS ,Vol.
24, No.4, APPRIL 2003, 212.

第二章
[1] Semiconductor devices physics and technology 2nd edition, S.M. Sze
[2] Semiconductor material and device charaterization, DIETER K. SCHRODER
[3] F. A. Padovani and R. Stratton, "Filed and Thermionic-Feild Emission in Schottky
Barriers" , Solid-State Electron. 9, 695-707, July 1966; F. A. Padovani, " The Current-Voltage Charateristics of Metal-Semiconductor Contacts " in Semiconductors and semimetals (R. K. Willardson and A. C. Beer, eds.), Academic Press, New York, 7A, 75-146, 1971.
[4] Semiconductor material and device charaterization, DIETER K. SCHRODER
[5] E. H. Rhoderick and R. H. William, Metal-Semiconductor Contacts, 2nd ed., Clarendon, Oxford, 1988.
[6] A. Y. C. Yu, "Electron Tunneling and Contact Resistance of Metal-Silicon Contact Barriers," Solid-state Electron. 13, 23-247, Feb. 1970.
[7] F. A. Padovani and R. Stratton, "Filed and Thermionic-Feild Emission in Schottky Barriers," Solid-State Electron. 9, 695-707, July 1966; F. A. Padovani,"The Current -Voltage Charateristics of Metal-Semiconductor Contacts,"inSemiconductors and sem imetals (R. K. Willardson and A. C. Beer, eds.),Academic Press, New York, 7A,
75-146, 1971.
[8] Kuo-Chin Huang, Wen-How Lan and Kai Feng Huang,Jpn. J. Appl. Phys.,Vol. 43, No.1,2004 ,pp. 82-85.
[9] optoelectronics and photonics principles and practices, S.O. Kasap
[10] Semiconductor devices physics and technoloy 2nd edition, S.M. Sze
[11] S. V. Averine, Y. C. Chan, and Y. L. Lam, "Geometry optimization of interdigitated Schottky-barrier metal-semiconductor-metal photodiode structures,"s. S. E., vol. 45,
pp. 441-446, 2001
[12] Burm J, Litvin KI, Schaff WJ, and Eastman LF, "Optimization of high-speed metal-semiconductor-metal photodetectors," IEEE Photon. Technol. Lett., vol. 6, no. 6, pp. 722-724,1994.
[13] Semiconductor material and device charaterization, DIETER K. SCHRODER
[14] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys. 83, 6148 (1998).
[15] Hao JIANG, Naoyuki NAKATA,Guang Yuan ZHAO, and et al., Jpn. J. Appl. Phys.,Vol.40(2001),pp.505-L507
[16] optoelectronics and photonics principles and practices, S.O.Kasap.
[17]光電半導體技術手冊 紀國鐘 蘇炎坤 教授 主編
[18] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C.Campbell, J. Appl. Phys. 83, 6148 (1998).
[19] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, Appl. Phys. Lett. 72, 542 (1998).
[20] O. Katz, G. Bahir,and J. Salzman, Appl. Phys. Lett.,Vol. 84,No.20,17 May 2004, pp.4092-4094.
[21] optoelectronics and photonic principle and practices. S. O. Kasap
[22] O. Katz, V. Garber, B. Meyler, G. Bahir,and J. Salzman Appl. Phys. Lett. 79, 1417(2001)
[23] O.Katz,G.Bahir,and J. Salzman,Appl.Phys.Lett.,Vol.84,No.20,17 May 2004,4092-4094.
[24] Semiconductor material and device charaterization, DIETER K. SCHRODER

第三章
[1] D.Walker, X.Zhang, P. Kung, A. Saxler and et al., Appl. Phys. Lett. 68(15), 8 April,1996, 2100-2101.
[2] A. Rogalski,Infrared photon detectors(SPIE,Bellingham,WA1995)
[3] Jun OHSAWA, Takahiro KOZAWA and er al., Jpn.J.Appl.Phys.,Vol.12(2005), pp8441-8444.

第四章
[1] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C.Campbell, J. Appl. Phys. 83, 6148 (1998).
[2] optoelectronics and photonic principle and practices. S. O. Kasap
[3] O. Katz, V. Garber, B. Meyler, G. Bahir,and J. Salzman Appl. Phys.Lett. 79, 1417(2001)
[4] D. Walker,X. Zhhang,P. Kung,A. Saxler and et al.,Appl. Phys. Lett. 68(15), 8 April
1996, pp2100-2101.
[5] Michael A. Reshchikov and Hadis Morkoc, J.Appl. 97, 061301(2005), p47
[6] Solid-state Electronics Vol. 41, No.2, pp.279-281,1997.

第五章
[1] Semiconductor material and device charaterization, DIETER K. SCHRODER.

第六章
[1] J.Z.Li, J.Y.Lin and H.X.Jiang, et al., Appl.Phys.Lett.69(10), 2 September 1996, 1474.
[2] A.Y. POLYKOV, N.B.SMIRNOL, A.V.GOVORKOV, et al., Solid-State Electronics,
Vol.42 No.4., pp.627-635,1998
[3]R.H.Horng, D.S.Wuu et al., Thin Solid Films 343-344(1999)642-645

附錄一
[1] Hao JIANG, Naoyuki NAKATA and et al.,Jpn. J. Appl. Vol. 40 (2001) pp.L505-L507, part
2. No. 5B, 15 May 2001.
[2]Jun OHSANA, Takahiro KOZAWA and et al., Jpn. J. Appl. Phys.,Vol. 44, No. 12 (2005), pp.8441-8444.
[3] O. Katz, V. Garber, B. Meyler, G. Bahir,and J. Salzman Appl. Phys. Lett. 79, 1417(2001)
[4] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys. 83, 6148 (1998).
[5] PC Chang, C H Chen and et al.,Semicond. Sci. Technol.19(2004) 1354-1357
[6] D.W. Kim, Y. J. Sung, J.W. Park,and G.Y. Ywom,Thin Solid Films 398-399(2001) 87-92
[7] Christopher M. Pelto, Y. Austin Chang, and et al., Solid-state Electronics 45(2001) 1597-1605.
[8] X. A. Cao and S. J. Pearton and et al.,Appl. Phys. Lett., Vol. 75, No. 26, 27 December 1999, pp. 4130-4132.
[9] 半導體製程製造技術 第二版 吳昌崙 張景學 編著

附錄二
[1] Introduction to Semiconductor Manufacturing Technology, Hong Xiao
[2] Kazuya Kusaka, Takao Hanabusa and Kikuo Tominaga, J. Vac. Sci. Technol. A22(4),Jul/Aug 2004, 1587
[3] Pung Keun SONG,Eriko YOSHIDA,et al.,Jpn. J. Appl. Phys. Vol. 43, No. 2A
(2004), pp.L164-L166.
[4] R.H. Horng,D.S. Wuu, S.C. Wei, S.H. Chan,C.Y. Kung,Thin solid Films 343-344
(1999)642-645.
[5] K. Kusaka, T. Hanabusa,K. Tominaga, Vacuum 74(2004),613-618.
[6] N.A. Preschilla, N.M. Elkashef, R.S. Srinivasa, S. Major, Surface and Coatings
Technology,108-109(1998)328-331.
[7] Nahlah Elkashef,et al.,Thin Solid Film 333(1998) 9-12.
[8] Ying-Ge Yang, Hong-Lei Ma,Cheng-Shan Xue,et al.,Proceedings of SPIE Vol. 4918
(2002), 187.
[9] Hong-LeiMa, Ying-Ge Yang, et al,Diamond and related Material 12(2003),
1402-1405.
[10] A.N. Blaut-Blachev, Semiconductors Vol.35 No.6 2001, pp.688-689
[11] Q.X.Guo, W.J. Lu and D.Zhang,et al.,J. Vac. Sci. Technol. A22(4), Jul/Aug 2004, 1290
[12] Satoshi Kobayashi, Shuichi Nonomura, et al., Applied Surface Science 113/114
(1997) 480-484.
[13] Joo Han Kim and Paul H. Holloway, J. Vac. Sci. Technol. A22(4),Jul/Aug 2004, 1591
[14] Joo Han Kim, M.R.Davidson and et al., Appl.Phys.Lett.,Vol.83,No.23,8 December
2003, 4746
[15] W. Schmidt and N. Wittekindt, Appl. Phys.Lett., Vol. 20, No. 2, 15 January
1972,71.
[16] A.N. Blaut-Blachev, Semiconductors Vol.35 No.6 2001, pp.688-689
[17] K. Kusaka, T. Hanabusa, K. Tominaga, Vacuum 74(2004), 613-618.
[18] Vaclav Prajzler, Ivan Huttl,et al.,Pro. of SPIE Vol. 5445,294-297
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊