(3.227.235.183) 您好!臺灣時間:2021/04/14 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇信遠
研究生(外文):Shin-Yuan Su
論文名稱:摻雜磷光發光體之高效率可撓式有機發光二極體
論文名稱(外文):High Efficiency Flexible Organic Light-Emitting Diodes by Phosphorescent Dopant
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:141
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分成兩大主題來探討可撓式有機發光二極體,一為螢光元件,首先利用旋轉塗佈α-NPD (溶於THF)作為陽極緩衝層,目的在於降低ITO表面粗糙度並改善有機材料附著性,以提升可撓式有機發光二極體之壽命,當結構為:ITO/α-NPD(0.08wt%)/NPB(20nm)/Alq3(80nm)/ LiF/Al,比較熱蒸鍍製程,其元件最大發光亮度從516 cd/m2 @10V大幅提升至2370 cd/m2 @10V,壽命從621分鐘提升至4193分鐘,再來利用CuPc/m-MTDATA雙層緩衝層,目的在於降低ITO與電洞傳輸層NPB間的能障,當結構為:ITO/CuPc (10nm)/m-MTDATA(20nm)/NPB(40nm)/ Alq3(80nm)/LiF/Al,其元件最大亮度為1820 cd/m2 @10V,最大發光效率為6.35 cd/A @9V;二為磷光元件,首先利用NPB作為電洞傳輸層,元件結構為:ITO/NPB(50nm)/CBP:Ir(ppy)3(40nm)/BCP(10nm)/Alq3(50nm)/ LiF/Al,其元件最大亮度為10220 cd/m2 @10V,最大效率為30.4 cd/A @6V;並以CsF取代LiF,可再提升最大效率至32.5 cd/A @5V;再以TPBi取代BCP,當TPBi厚度為10nm,可再提升最大亮度為10680 cd/m2 @10V,最大效率至34.2 cd/A @5V,最後以α-NPD作為電洞傳輸層,並插入一NPB(溶於THF)作為陽極緩衝層,當結構為ITO/NPB(0.2 wt%)/ α-NPD(30nm)/ CBP:Ir(ppy)3(50nm)/BCP(20nm)/Alq3 (80nm)/LiF/Al, 其元件最大亮度為8040 cd/m2 @10V,最大效率為21 cd/A @6V;若以TPBi取代BCP作為電洞阻隔層時,當TPBi厚度為10nm時,其元件之最大亮度提升為12030 cd/m2 @10V,最大效率可達24.4 cd/A @7V;比較利用旋轉塗佈NPB緩衝層,其元件半衰期從151分鐘大幅提升至1352分鐘。
This study is mainly divided into two topics to discuss flexible organic light emitting diodes (OLED). The first topic used fluorescent dopants. The other used phosphorescent dopants. First, the research employs a way of spin-coating α-NPD (firstly solved in THF) on ITO surface as an anode buffer layer. The purpose is to reduce the ITO surface roughness and improve the cohesion between ITO and organic materials and then increase the life-time of flexible OLEDs. Compared with thermally evaporated method, the structure: ITO/α-NPD(0.08 wt% in THF)/NPB(20nm)/Alq3(80nm)/LiF/Al can improve the luminance from 516 to 2370 cd/m2 at 10V. In the life-time comparison, the spin-coated buffer layer can also improve the life-time from 621 to 4193 minutes. Then the research utilized CuPc/m-MTDATA double buffer layers to improve the characteristics of flexible OLED. The purpose is to reduce the barrier between ITO and NPB. The thickness of each layer was adjusted. In the optimum structure, ITO/CuPc (10nm)/m-MTDATA(20nm)/NPB(40nm) /Alq3(80nm)/LiF/Al, the maximum luminance is 1820 cd/m2 at 10V and the maximum luminance efficiency is 6.35 cd/A at 9V.
The second topic is the phosphorescent organic light emitting diodes. The thickness of each layer was adjusted. First, the research employed NPB as hole transport layer. The optimum structure is ITO/NPB(50nm)/ CBP:Ir(ppy)3(40nm)/BCP(10nm)/Alq3(50nm)/LiF/Al. The structure achieved the maximum luminance of 10220 cd/m2 at 10V and maximum luminance efficiency of 30.4 cd/A at 6V. And then LiF was replaced with CsF. The maximum luminance efficiency was increased to 32.5 cd/A at 5V. Next this research utilizes TPBi to replace BCP. When the thickness of TPBi is 10 nm, the maximum luminance is 10680 cd/m2 at 10V and maximum luminance efficiency is 34.2 cd/A at 5V. Finally the research utilized α-NPD as hole transport layer and inserted NPB (solved in THF) as buffer layer above the anode layer. The optimum structure is ITO/NPB (0.2wt% in THF)/α-NPD (30nm)/CBP:Ir(ppy)3(50nm)/BCP(20nm)/Alq3(80 nm)/LiF/Al. This structure can obtain a maximum luminance of 8040 cd/m2 at 10V and maximum luminance efficiency of 21 cd/A at 6V. Then the BCP was replaced with TPBi as hole blocking layer. When the thickness of TPBi is 10 nm, the maximum luminance is 12030 cd/m2 at 10V and maximum luminance efficiency is 24.4 cd/A at 7V. By using NPB solved in THF as anode buffer layer, the device life-time can be improved from 151 to 1352 minutes.
中文摘要 i
Abstract ii
致謝 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1有機發光二極體發展概述 1
1-2 有機發光二極體之發光原理 3
1-3 有機發光二極體材料 9
1-4 有機發光二極體效率提升方式 13
1-5 有機發光二極體劣化因素 14
1-6 文獻回顧 14
1-7 研究動機 16
第二章 實驗方法 18
2-1 塑膠基板參數 18
2-2 ITO塑膠基板陽極電極圖案化與基板清洗方法 18
2-3 元件製程中所使用之材料 20
2-4蒸鍍設備 24
2-5 有機薄膜層與金屬薄膜層之蒸鍍 25
2-6元件封裝 27
2-7 各材料之升溫曲線與沉積速率 27
2-8 量測儀器 31
第三章 結果與討論 33
3-1 以α-NPD作為緩衝層來提升螢光OLED特性及壽命之研究 33
3-2 以CuPc/m-MTDATA作為緩衝層來提升螢光OLED特性之
研究 36
3-3 以電洞傳輸層NPB來提升磷光有機發光二極體效率之研究 39
3-4 以電洞傳輸層α-NPD來提升磷光有機發光二極體效率之研究 48
第四章 結論 58
參考文獻 124
作者簡歷 126
[1]M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
[2]D. F. Williams, M. Schadt, Proc. IEEE., 58, 476 (1970).
[3]W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
[4]D. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Thin Solid Films, 94, 17 (1982).
[5]C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
[6]J. H. Burroughs, D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[7]S. G. Schulman, Fluorescence and Phosphorescence Spectroscopy : Physico chemical Principles and Practice, Pergamon Press, Oxford (1995).
[8]R. W. Smith and A. Rose, Phys. Rev., 97, 1531 (1955).
[9]C. W. Tang, Appl. Phys. Lett., 48, 183 (1985).
[10]C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 27, L713 (1988).
[11]M. Era, C. Adachi. T. Tsutsui, and S. Saito, Chem. Phys. Lett., 178, 488 (1991).
[12]J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Science, 267, 1332 (1995).
[13]徐玉娟, Science Monthly, 2, 123 (2001).
[14]M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
[15]C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 77, 904 (2000).
[16]P. E. Burrows, S. R. Forrest, T. X. Zhou and L. Michalski, Appl. Phys. Lett. 76, 2493 (2000).
[17]M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Appl. Phys. Lett. 79, 156 (2001).
[18]D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 74, 442 (1999).
[19]T. D. Anthopoulos, J. P. J. Markham, E. B. Namdas, I. D. W. Samuel, S. C. Lo and P. L. Burn, Appl. Phys. Lett. 82, 4824 (2003).
[20]S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett. 83, 569 (2003).
[21]B. D. Chin, M. C. Suh, M. H. Kim, S. T. Lee, H. D. Kim, and H. K. Chung, Appl. Phys. Lett. 86, 133505 (2005).
[22]G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
[23]X. Zhou, D. S. Qin, M. Pfeiffer, J. Blochwitz-Nimoth, A. Werner, J. Drechsel, B. Maennig, K. Leo, M. Bold and P. Erk, H. Hartmann, Appl. Phys. Lett. 81, 4070 (2002).
[24]H. J. Peng, X. L. Zhu, J. X. Sun, X. M. Yu, M. Wong, and H. S. Kwok, Appl. Phys. Lett. 88, 033509 (2006).
[25]T. H. Liu, S. F. Hsu, M. H. Ho, C. H. Liao, Y. S. Wu, C. H. Chen, Y. L. Tung, P. C. Wu, and Y. Chi, Appl. Phys. Lett. 88, 063508 (2006).
[26]L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 84, 167 (2004).
[27]T. H. Yang, F. S. Juang, Y. S. Tsai, W. K. Kuo and M. C. Yokoyama, Jpn. J. Appl. Phys., 45(4B) (2006) 3729.
[28]S. A. Carter, M. Angelopoulous, S. Karg, P. J. Brock, and J. C. Scott, Appl. Phys. Lett., 70, 2067 (1997).
[29]J. C. Scott, S. A. Carter, S. Karg, and M. Angelopoulous, Synth. Met., 85, 1197 (1997).
[30]T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
[31]F. Zhu, B. Low, K. Zhang, and S. Chua, Appl. Phys. Lett., 79, 1205 (2001).
[32]W. L. Yu, J. Pei, Y. Cao, and W. Huang, J. Appl. Phys., 89, 2343 (2001).
[33]T. M. Brown and R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, and J. H. Burroughes, F. Cacialli, J. Appl. Phys. 93 (2003) 6159.
[34]J. Y. Lee and J. H. Kwon, Appl. Phys. Lett. 86, 063514 (2005)
[35]M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, and J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, Appl. Phys. Lett. 81, 2929 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔