跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/03 19:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威綸
研究生(外文):Chen Wei Lun
論文名稱:多孔矽材料奈米孔洞之研究與特性分析
論文名稱(外文):The study and analysis of nano-scale pores in porous silicon material
指導教授:林嘉洤
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:多孔矽P-N接面負微分電阻
外文關鍵詞:porous siliconP-N junctionNDR
相關次數:
  • 被引用被引用:2
  • 點閱點閱:655
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們藉由適當的改變實驗參數,並利用不同型態的矽基板作蝕刻,進而得到各種孔隙大小多孔矽薄膜。其中,我們發現藉由具有P-N junction 的矽基板能有效的改善N型層較難蝕刻的情形;且P-N type中P-type layer的厚度對蝕刻的結果亦有影響。並利用P-L及FTIR光譜來推論,產生多孔矽光激發光的原因是由於Si-O-Si的鍵結產生SiOx的螢光物質,導致多孔矽產生光激發光。而在P-L光譜中發現,蝕刻N-sub on P-epi silicon所得的多孔矽具有較好的光激發光現象,除了有較大的強度外,其發光峰值也有藍移的現象。
在實驗中我們還發現藉由特殊的參數控制,可以獲得一些比較特別的孔洞結構,例如利用電場的變化產生磁場而獲得的發散狀孔洞,及在一個長時間的蝕刻下而獲得的多孔矽側向蝕刻結構。
此外我們在以時間為參數的探討中發現,在照光環境下,多孔矽蝕刻反應會有照光極限的產生,且其孔隙率隨蝕刻時間增長亦會跟的增加,並且從FTIR光譜中發現其不同時間下的多孔矽鍵結變化。
針對多孔矽的電性分析,可以發現多孔矽的電阻值會隨孔隙率上升而增高,但其電阻會因表面的macro porous的擴大,造成濺鍍正面電極時,金屬有效的沉積在表面孔洞內,使得其部份介面電阻降低,且在n-epi on p-sub多孔矽上則可以發現明顯電阻的負微分現象。
In this study, the porous silicon (PS) films are fabricated by electrochemical anodization method. Various experimental parameters, such as etching current density, etching time and HF concentration, are investigated. Photoluminescence (PL), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) mapping and Fourier transform infrared spectroscopy (FTIR) are used to analyze the film characteristics in the PS. N-type PS is difficult to form by conventional method for the lack of holes. However, with the forward biased P-N junction, sufficient holes can drift from P layer to N layer and hence the N-type PS can be easily formed. In addition, the thickness of P-type layer influences the etching result. From P-L spectrum, it can be found that etching on the N/P sample produces better PL emission and blue-shifting. Deep and straight shape pores can be obtained. The morphology, cross section view, porosity, PL and EDX analysis are investigated and compared with conventional method.
總目錄
摘要………………………………………………………………………Ι
總目錄………………………………………………………ΙII
圖目錄………………………………………………………V
表目錄………………………………………………………X
第一章 緒論……………………………………………………………1
1-1多孔矽之簡介………………………………………………………1
1-2研究動機……………………………………………………………5
第二章多孔矽的形成模型………………………………………………6
2-1多孔矽的表面化學…………………………………………………6
2-2矽的溶解與多孔矽的形成…………………………………………6
2-3多孔矽的形成模型…………………………………………………13
2-3.1比爾模型(Beale Model)………………………………13
2-3.2擴散限制模型(Diffusion-Limited Model)…………………16
2-3.3量子模型(Quantum Model)…………………………………18
第三章 多孔矽的製備…………………………………………………20
3-1試片準備……………………………………………………………20
3-2多孔矽的製備………………………………………………………21
3-3多孔矽之蝕刻參數…………………………………………………24
3-3.1多孔矽之孔隙率……………………………………………24
3-3.2 多孔隙的蝕刻速率…………………………………………27
3-3.3基材矽的摻雜濃度、型態與蝕刻參數間的關係……………28
3-4正面電極之製作……………………………………………………31
第四章 多孔矽特性分析………………………………………………33
4-1多孔矽表面型態探討………………………………………………33
4-1.1不同參數下蝕刻N-type和P-N junction矽基板比較………33
4-1.1.1照光下不同參數及不同基板探討…………………38
4-1.1.2蝕刻N-epi on P-sub在照光與否下作探討………53
4-1.2多孔矽的側向蝕刻…………………………………………63
4-1.3多孔矽的照光極限…………………………………………73
4-2多孔矽的光激發光比較……………………………………………85
4-3多孔矽的電特性比較………………………………………………95
4-4多孔矽的FTIR特性比較…………………………………………101
第五章 結論…………………………………………………………104
5-1 結論………………………………..…………………………104
5-5 未來展望…………………………………………………………106
參考文獻………………………………………………………………107
[1] Canham, L. T., Appl. Phys. Lett. 57, 1046, 1990.
[2] A. Uhir, Bell System Tech. J., 35, 333, 1956.
[3] L. Jia and S. L. Zang, S. P. Wong and H. Wilson, S. K. Hark, Z. F. Liu and S. M. Cai, “Furthur Evidence for the Quantum-Confined
Electrochemistry Model Of The Formation Mechanism of P(-)-Type Porous Silicon,” Applied Physics Letter vol. 69, Iss. 22, p.p.3399~3401, 1996.
[4] V. Lehmann, “the Physics of Macropore Formation in Low Doped N-type Silicon,” J. Electrochem. Soc., vol. 140, no. 10, 1993.
[5] D.R. Turner, J. Electrochem Soc. 105, 402, 1958.
[6] Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarash, J. electrochem. Soc. 122, 1351, 1975.
[7] C. Pickering, M. J. J. Beale, D. J. Robbins, P. J. Pearson and R. Greef, J. Phys. C, Solid State Phys., 17, 6553, 1984.
[8] Cullis, A. G. and Canham, L. T., Nature 353, 335, 1991.
[9] Bsiesy, A., vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci254, 195, 1991.
[10] Sagnes, I., Halimaoui, A., Vincent, G, and Badoz, P. A., Appl. Phys. Lett. (in press)
[11] Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 59, 2814, 1991.
[12] Perez, J. M., Villalobos, J., McNeill, Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D., and Glosser, R., Appl. Phys. Lett.
[13] Tsai, C. Li, K.-H., Kinosky, D. S., Qian, R.-Z., Hsu, T.-C., Irby, J. T. Banerjee, S.K., Tasch, A. F., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 60, 1700, 1992.
[14] Prokes, S. M., Freitas, J. A. and Searson, P. C., Appl. Phys. Lett. 60, 3295, 1992.
[15] Prokes, S. M., Carlos, W. E. and Bermudez, V. M., Appl. Phys. Lett. 61, 1447, 1992.
[16] McCord, P., Yau, S. L. and Bard., A. J., Science 257, 68, 1992.
[17] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Webber, J. and Cardona, M., Soild State Comm. 81, 307, 1992.
[18] Axel Richter IEEE electron device letters, vol. 12 No. 12, 1991.
[19] G. Smestad and H. Ries, Solar Energy Materials Solar Cells 25, 51, 1992.
[20] G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, Solar Cells 25, 51, 1992.
[21] T. Taliercio, M. Dilhan, E. Massone, A. M. Gue, B. Fraisse, A. Foucaran, Thin Solid Films255, 310, 1995.
[22] L. Z. Yu and C. R. Wie, Electronics Lett. 28, 911, 1992.
[23] Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, J. Electrochem. Soc. 122, 1351, 1975.
[24] Cullis, A. G. and Canham, L. T., Nature 353, 335, 1991.
[25] Bsiesy, A., vial, J. C. Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci 254, 195, 1991.
[26] Sagnes, I., Halimaoui, A., Vincent, G, and Badoz, P. A., Appl. Phys. Lett. ( in press )
[27] Tsai, C. Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 59, 2814, 1991.
[28] Tsai, C. Li, K.-H., Kinosky, D. S., Qian, R.-Z., Hsu, T,-C., Irby, J. T. Banerjeee, S. K., Tasch, A. F., Campgell, J. c., Hance, B. K. and White, J. M., Appl. Phys. Lett. 60, 1770, 1992.
[29] Perez, J. M., Villalobos, J., Mcneill, Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D. and Glosser, R., Appl. Phys. 61, 563, 1992.
[30]Art Homa, “Alternative Approaches for DMFC Design:Silicon-Based Systems” 6th Annual SMALL FUEL CELLS(sm), 2004.
[31] T. Unagami and K. Kato, Trans. IEE Jap., vol.98-A, No. 10, pp.
[32] C.Pickering, M.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, J.
Phys. C: Solid State Phys., 17,5535, 1984.
[33] M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, J. Cryst. Growth, 73, 622, 1985.
[34] M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, Appl. Phys. Lett., 46.86, 1985.
[35] I. M. Young, M. I. Beale and J.D. Benjamin Appl. Phys. Lett., 46, 1133, 1985.
[36] R.L. Smith, S.F. Chuang, and S.D. Collins, J. Electron. Mater., 17,533, 1988.
[37] R.L. Smith and S.D. Collins, Phys. Rev. A, 39,5409, 1989.
[38] R.L. Smith and S.D. Collins, Phys. J. Appl.Phys., 71, R1, 1992.
[39] T.A. Witten and L.M. Sander Phys. Rev. B, 27, 5686, 1983.
[40] A.J. Read, R.J. Needs, K.J. Naish, L.T. Canham, P.D.J. Calcott, and A. Qteish, Phys, Rev. Lett., 69,1232, 1992.
[41] G.D. Sanders and Y.C. Chang, Phys. Rev. B, 45,856, 1992.
[42] V.Lemann, U. Gösele, Appl. Phys. Lett. 58, 856, 1991.
[43] V.P. Parkhutik, J.M. Albella, J.M. Martinez-Duart, J.M.
Gomez-Rodriguez, A. M. Baro, and V.I. Shershulsky, ibid. , 2, 366, 1993.
[44] H. Yan and X. Hu, J. Appl. Phys., 73, 4324, 1993.
[45] George C. John and Vijay A. Singh, Physical. Review. B., 52, 125, 1995
[46] N.J. Pulsford, G.L.J.A. Rikken, Y.A.R.R. Kessener, E.J. Lous and A.H.J. Venhuizen, J. Appl. Phys., 75, 636, 1994.
[47] L. Esaki and R. Tsu: IBM J. Res. Develop. 14, 61, 1970.
[48] 蔡豪益, “多孔矽材料光電特性之研究極其於負電阻元件之研製”,成功大學電機工程學系碩士論文, 1996.
[49] S-J Wang, J-C Lin and H-Y Tsai Electronic Letters, vol. 32, No. 17, p1618. 1996.
[50] J. M. Lavine, S. P. Sawan, Y. T. Shieh and A. J. Bellezza, Appl. Phys. Lett, 62, 1099, 1993.
[51] L. Tsybeskov and P. M. Fauchet, Appl. Phys. Lett, 64, 1983, 1994.
[52] X. Y. Hou, G. Shi, W. Wang, F. L. Zhang, P. H. Hao, D. M. Huang and X. Wang, Appl. Phys. Lett, 62, 1097, 1993.
[53] S. Shih, K. H. Jung, and D. L. Kwong, M. Kovar and J. M. White, Appl. Phys. Lett, 62, 1904, 1993.
[54] Y. H. Sec, H. -J. Lee, H. I. Jeon, D. H. Oh, K. S. Nahm, Y. H. Lee, E. K. Suh, and H. J. Lee, Appl. Phys. Lett, 62, 1812, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top