跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜鶴芸
研究生(外文):DU, HE-YUN
論文名稱:以含浸法製備觸媒在奈米碳管上應用在直接甲醇燃料電池應用在直接甲醇燃料電池以含浸法製備觸媒在奈米碳管上
論文名稱(外文):Synthesis of Catalysts by Impregnation Method on Carbon Nanotubes for Direct Methanol Fuel Cell Application
指導教授:施漢章陳貴賢
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:94
中文關鍵詞:直接甲醇燃料電池奈米碳管鉑奈米顆粒
外文關鍵詞:DMFCCarbon nanotubesPt
相關次數:
  • 被引用被引用:2
  • 點閱點閱:508
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
直接甲醇燃料電池是利用氧化還原反應產生電能,分別在陽極端與陰極端直接供給甲醇與氧氣。在近年來,直接甲醇燃料電池的焦點在於更高的效率與更低的成本,在本論文中引進奈米尺寸的概念,同時將觸媒與碳載體尺寸縮小至奈米等級,在碳載體的部份本論文利用MPECVD系統直接成長於碳布上的奈米碳管,有別於傳統塗佈製程,本論文之奈米碳管作為載體,降低了碳管與碳布之界面阻抗,故擁有高表面積與高電子傳遞的特性,適合當作承載電觸媒的載體。
在觸媒的部份,本論文使用化學法製備鉑觸媒奈米顆粒,化學法具有成本低、實驗設備簡便及觸媒分佈均勻的優點,本論文在奈米碳管上鉑觸媒負載量約0.1 mg/cm2,由TEM得知其平均粒徑約2 nm,其相對應之觸媒表面活性面積為800 cm2/mg,而在zeta電位測試結果得知在pH值11的膠體溶液中具有最大電斥力,其zeta電位約為60 mV,對照TEM結果可知當zeta電位越大可得到越小粒徑之鉑觸媒奈米顆粒。
本論文成功的使用醇類還原法得到奈米級的鉑觸媒,在電觸媒活性有非常大的提升。另一方面觸媒分散於直接成長奈米碳管以提高載體之導電性,在低觸媒用量即可得到極佳之全電池表現。
Direct methanol fuel cell (DMFC) is a kind of power source which generates electrical power by a redox reaction involving methanol fuel and oxygen fed directly to the anode and cathode, respectively. To date, there are still some important issues, such as electrocatalysts, electrode membrane material that need to be improved for better DMFC performance. Carbon nanotubes (CNTs), which have high surface area and good electronic conductivity, are considered better suited for supporting the electrocatalysts. On the other hand, electrocatalysts play an important role for the redox reaction in DMFC system. Platinum is catalytically active in room temperature electro-oxidation reactions of interest to the anode and cathode applications. The activity of platinum-based electrocatalysts is strongly dependent on particle size, size distribution, particle dispersion and so on. In this thesis, CNTs are employed to support electrocatalysts. The nano-sized platinum particles are prepared by alcohol reduction process.
To improve the DMFC performance, CNTs were directly grown on carbon cloth (CNTs-carbon cloth electrode) by microwave plasma-enhanced chemical vapor deposition and well-dispersed Pt nanoparticles (Pt NPs) were subsequently grown on CNTs-carbon cloth electrode by the alcohol reduction process. From scanning electron microscopy (SEM) images, the well-distributed Pt NPs on highly-packed CNTs-carbon cloth electrode were observed. From transmission electron microscopy (TEM) images, the as-grown CNTs were found to be bamboo-like structure with diameter 20-30 nm and the nano-sized Pt NPs are highly dispersed on CNTs. The grain size of Pt NPs can be controlled by the pH value of the solution during alcohol reduction process. It is found that the average diameter of Pt NPs is around 2 nm at pH 11, which aids in the relatively narrow-sized distribution suitable for the redox reaction. The Pt electrochemical surface activity area is about 800 cm2-mg-1 at pH 11. The membrane electrode assembly (MEA) are composed of the as-prepared 0.1 mg-cm-2 of Pt NPs on CNTs-carbon cloth electrode for the cathode, 4.0 mg-cm-2 of Pt-Ru supported by activated carbon for the anode and the sandwiched membrane of Nafion® 117. The DMFC performance is about 33mW-cm-2 at 80 ℃ by feeding 1 M methanol and oxygen to anode and cathode, respectively.
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅳ
圖目錄 Ⅶ
表目錄 XI

第一章 緒論 1
1.1 燃料電池簡介 1
1.2 直接甲醇燃料電池簡介 3
1.2.1 氣體擴散層 3
1.2.2 觸媒層 4
1.2.3 高分子電解質薄膜 4
第二章 研究動機與文獻探討 6
2.1 文獻探討 6
2.1.1 觸媒 6
2.1.2 膠體懸浮液的特性 16
第三章 實驗儀器與實驗藥品 22
3.1 實驗藥品 22
3.2 製程儀器簡介 22
3.2.1 離子濺鍍膜系統 22
3.2.2 微波電漿化學氣相沈積系統 24
3.3 分析儀器簡介 26
3.3.1 掃描式電子顯微鏡 26
3.3.2 穿透式電子顯微鏡 27
3.3.3 電漿偶合原子發射光譜儀 28
3.3.4 X光繞射分析儀 30
3.3.5 恆電位分析儀 31
3.3.6 直接甲醇燃料電池分析儀 34
3.3.7 zeta 電位測量儀 35
第四章 實驗方法與結果討論 36
4.1 實驗流程 36
4.2 成長奈米碳管之鐵觸媒塗佈 37
4.3 微波電漿化學氣相沉積法成長奈米碳管 38
4.4 多元醇含浸法製備鉑觸媒 42
4.5 多元醇含浸法製備鉑觸媒之TEM分析 48
4.6 多元醇含浸法製備鉑觸媒之XRD分析 58
4.7 多元醇含浸法製備鉑觸媒之CV分析 63
4.8 無掺雜氮原子奈米碳管之比較 67
4.9 單一電池測試 71
4.10 多元醇含浸法製備鉑觸媒之Zeta電位分析 74
第五章 結論 77
參考文獻 78
1黃鎮江, ”燃料電池”,第四章,全華科技圖書股份有限公司(92)
2W. Vielstich, A. Lamm, H. A. Gasteiger, Handbook of Fuel cell, 2003, 1 , 306
3衣寶廉, ”燃料電池-原理與應用”第一章, 五南圖書出版中心(94)
4V. Jalan, E. J. Taylor, ”Importance of Interatiomic Spacing in Catalytic Reduction of Oxygen in Phosporic Acid”, J. Electrochem. Soc., 1983, 130, 2299
5M. T. Paffet, G. J. Beery, S. Gottesfeld, ”Oxygen Reduction at Pt0.65Cr0.35,Pt0.2Cr0.8 and Roughened Platinum”, J. Electrochem. Soc., 1988, 135, 1431
6G. Faubert, D. Guay, J. P. Dodelet, ”Pt Inclusion Compounds as Oxygen Reduction Catalysts in Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., 1988, 145, 2985
7A.Biloul, M. Gouerec, G. Savy, S. Scarbeck, and J. Riga, ”Oxygen Electrocatalysis under Fuel Cell Condition : Behaviour of Cobalt Porphyrins and Tetraazaannulene Analogues”, J. Appl. Electrochem., 1996, 26, 1139
8S. M. Jee, S. S. Rinivasan and A. J. Apple, ”Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells”, Electrochim. Acta, 1993,38 (12), 1661
9V. A. Paganin, E. A.Ticianelli and E. R.Gonzalez, ”Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells”, J. Appl . Electrochem. ,1995, 26, 297
10莊萬發編著, 超微粒子理應用, 復漢出版社, 1995
11陳郁文, 奈米材料在觸媒上之應用, 化工期刊, 第五卷第五期
12郭清發, 黃俊傑, 牟中原, 物理雙月刊, 2001, 6, 23, 614
13M. T. Reetz, M. Winter, R. Breinbauer, T.-A.Thomas, ”W. Vogel, ”Size-Selective Electrochemical Preparation of Surfactant-Stabilized Pd-, Ni- and Pt/Pd Colloids”, Chem. Eur. J., 2001, 7, 1084
14T.C.Deivaraj and J. Y. Lee, ”Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, J. Power Sources, 2005, 142, 43
15Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, and W. Sugimoto, ”Effect of Structure of Carbon-supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol”, J. Electrochem. Soc., 2000, 147, 12 , 4421
16B. Xue, P. Chen, Q. Hong, J. Lin and K. L. Tan, ”Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes”, J. Mater. Chem., 2001, 11, 2378
17F. V. Françoise, J. P. Lagier, B. Dumont and Mi. Figlarz, ”Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process”, J. Mater. Chem., 1993, 3, 627
18U. S. patent 20030176277
19U. S. patent 6518217
20Y. M. Kim, K. W. Park, J. H. Choi, I. S. Park, Y. E. Sung, ”A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC”, Chem. Commun., 2003, 5 (7), 571
21U. S. patent 6528201
22K. Sasaki, Y. Mo, J.X.Wang, M. Balasubramanian, F. Uribe, J. McBreen, R.R. Adzic, ”Pt submonolayers on metal nanoparticles—novel electrocatalysts for H2 oxidation and O2 reduction”, Electrochim. Acta, 2003, 48, 3841
23P.C. Biswas, Y. Nodasaka, M. Enyo, M. Haruta, ”Electro-oxidation of CO and methanol on graphite-based platinum electrodes combined with oxide-supported ultrafine gold particles”, J. Electroanal. Chem., 1995, 381, 167
24Ana M. Castro Luna, Giuseppe A. Camara, Valdecir A. Paganin,Edson A.Ticianelli, ”Effect of thermal treatment on the performance of CO-tolerant anodes for polymer electrolyte fuel cells”, Chem.Commun., 2000, 2, 222
25A.S. Aricò, P.L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, ”Methanol electro-oxidation on gas diffusion electrodes prepared with PtRu/C catalysts”, Electrochim. Acta, 2002, 47, 3715
26W. Tu and H. Liu, ”Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation”, J. Mater. Chem., 2000, 10, 2207
27Z. Liu, X.Y. Ling, X. Su, and J. Y. Lee. ”Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell”, Phys. Chem. B, 2004,108 (24), 8234
28W. J. Zhou; W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, ”Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells”, J. power Sources, 2000, 131. 217
29Y. Wang, J. Ren, K. Deng, L. Gui, and Y. Tang, ”Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media”, Chem. Mater., 2000, 12, 1622
30C. Bock, C. Paquet, M. Couillard, G. A. Botton, and B. R. MacDougall, ”Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism”, J. AM. CHEM. SOC., 2004, 126, 25, 8028
31R. Harpeness, Z. Peng, , X. Liu, V. G. Pol, Y. Koltypin, A. Gedanken, ”Controlling the agglomeration of anisotropic Ru nanoparticles by the microwave–polyol process”, J. colloid interface sci., 2005, 287, 678

32X. Li, W. X. Chen, J. Zhao, W. Xing, Z. D. Xu, Microwave polyol synthesis of Pt/CNTs catalysts: ”Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization”, Carbon, 2005, 43, 2168
33Z. Liu, X.Y. Ling, J. Y. Lee, X. Su and L. M. Gan, ”Nanosized Pt and PtRu colloids as precursors for direct methanol fuel cell catalysts”, J. Mater. Chem., 2003, 13, 3049
34F Bonet, K Tekaia-Elhsissen and K Vijaya Sarathy, ”Study of interation of ethylene glycol/PVP phase on noble metal powders Prepared by polyol process”, Bull. Mater. Sci., 2000, 23, 165
35W. Y. Yu, W. X. Tu, and H. F. Liu, ”Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating”, Langmuir, 1999, 15, 6
36H. E. Van Dam and H. Van Bekkum, ”Preparation of Platinum on Activated Carbon”, J. Catal., 1991, 131, 335
37磁場對二氧化矽粒子在(有機溶劑-水)中zeta電位的影響, 游薏雯,台灣大學化工所碩士論文(89)
38S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, 1991, 354, 56
39G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, ”Carbon nanotubule membranes for electrochemical energy storage and production”, Nature, 1998, 393, 346
40J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, ”Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes” , Nano Lett., 2001, 1(2), 87
41B. Rajesh, K.R. Thampi, J.M. Bonard, B. Viswanathan, ” Preparation of Pt-Ru bimetallic catalyst supported on carbon nanotubes” Bull. Mater. Sci., 2000, 23 , 341
42C. E. Banks, T. J. Davies, G. G. Wildgoose and R. G.Compton, ”Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites”, Chem. Commun., 2005, 829
43M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T.Yanagisawa, T. Hayashi, M. Terrones, and M. S. Dresselhaus., ”Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers”, Nano Lett., 2003, 3(6), 723.
44以PVD製備直接甲醇燃料電池之觸媒層研究, 蔡育泰,文化大學材料科學與奈米科技研究所碩士論文(94)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1.方淳民、毛昭家(民九四年七月),「基地之外場維修及品質管理探討」,空軍學術月刊,第五七三期
2. 7.魏靜芬,「自衛權」,軍法專刊,第四十六卷第五期,二○○○年五月。
3. 6.張隆義,「日本擴軍與亞太局勢」,問題與研究,第二十五卷,第九期,一九八六年九月。
4. 5.張隆義,「冷戰後日本防衛政策的轉變與亞太安全」,問題與研究,第三十五卷,第七期,一九九六年七月。
5. 4.蔡增家,「美日安保條約的政經意涵與制度的調適」,問題與研究,第三十七卷,第九期,一九九八年九月。
6. 3.楊永明,「美日安保與亞太安全」,政治科學論叢,第九期,一九九八年六月。
7. 2.楊永明,「冷戰時期日本之防衛與安全保障政策」,問題與研究,第四十一卷,第五期,二○○二年十月。
8. 1.許志雄,「主權論的歷史軌跡」,台北,月旦法學雜誌,第二十期,一九九七年一月號。
9. 5.張有恆、王穎駿(民九三年),「維修資源管理(MRM)之探討」,民航季刊,第六卷,第四期,民國年十二月,頁33-70
10. 6.張有恆、何慶生、徐永浩、楊博文等(民九十年六月),「航空安全人為因素探討及案例分析」,民航季刊,第三卷,第二期,頁1-14
11. 7.張有恆、萬怡灼(民九十年),「航空公司經營管理對飛航安全水準之影響」,民航季刊,第三卷,第一期,頁81-106
12. 8.景鴻鑫(民八七年十月),「飛安新思維」,科學月刊,第二九卷,第十期,頁802-807
13. 9.葉忠、馮咸丰 (民九四年六月),「知識管理運用於後勤管理資訊系統之研究-以軍機公司為例」,運籌研究集刊,第七期,頁59-91