跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李博文
研究生(外文):Po-Wen Lee
論文名稱:以霍爾效應強化n型多孔矽之製程
論文名稱(外文):An enhancement method of n-type porous silicon fabrication by Hall effect
指導教授:林嘉洤
指導教授(外文):Jia-Chuan Lin
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:106
中文關鍵詞:多孔矽霍爾效應N-type矽晶片
外文關鍵詞:PorousHall effectN-type silicon
相關次數:
  • 被引用被引用:2
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,針對難以被蝕刻的N-type矽晶片進行多孔矽的研究。多孔矽已被廣泛研究,但大部分都只針對P-type矽晶片做研究,主要原因為N-type矽晶片比P-type矽晶片所含電洞數較少,所以較不易被蝕刻。
本論文中,主要利用霍爾效應理論來強化N-type矽晶片的蝕刻,為了執行霍爾效應,必須先設計一個新的氧化蝕刻槽,使N-type矽晶片在上下電場蝕刻進行時,能夠同步施加X方向電流I,以及Z方向的磁場B,讓N-type矽晶片之電子往基板聚集,使表面層反轉成P型進行多孔矽之蝕刻。
最後藉由改變磁場大小,使在表面上產生之不規則孔洞和柱狀結構,得以控制。
In this thesis, the researches focus on the study of the difficult etched porous silicon. Porous has been extensive researched, but the majority study is based on the P-type silicon only, the main reason is that the N-type silicon has less electric holes than the P-type silicon. Therefore, the N-type silicon is more difficult to be etched.
The thesis emphasized the used of Hall-effect theory to strengthen the etching of N-type silicon. In order to carry out Hall-effect, the first thing is to design a new tank that can etch trough to oxidizing. This is to make N-type silicon etched at upper and lower electric fields that can exert direction electric current I of X in step, and magnetic field B of Z direction, then let the electron of N-type silicon assemble to the base plate. Then to make the surface layer change into the P-type and carry on the etching of the porous silicon instead.
Finally, by changing the size of magnetic field, the irregular pores and pillars occur on the surface of the N-type silicon. Therefore, the pores and the pillars can be controlled.
目錄
摘要------------------------------------------------------I
目錄------------------------------------------------------III
圖目錄----------------------------------------------------IV
表目錄----------------------------------------------------VII
第一章 緒論-----------------------------------------------1
第二章 理論機制-------------------------------------------2
2-1 多孔矽成形反應與機制----------------------------------2
2-1-1 多孔矽的電流-電壓曲線-------------------------------3
2-1-2 表面電化學溶解過程----------------------------------5
2-1-3 多孔矽表面電化學溶解理論分析------------------------8
2-1-4 多孔矽形成模型--------------------------------------11
2-2 多孔矽的發光機制--------------------------------------17
2-2-1 表面的分子形式--------------------------------------17
2-2-2 多孔矽的氫化----------------------------------------17
2-2-3 量子侷限效應----------------------------------------18
2-3 霍爾效應理論------------------------------------------19
第三章 實驗方法與步驟-------------------------------------23
3-1 試片前置處理------------------------------------------23
3-2 蝕刻槽的製備------------------------------------------25
3-3 測量儀器介紹------------------------------------------30
3-3-1 光致發光光譜分析儀(PL spectrum)-------------------30
3-3-2 掃瞄式電子顯微鏡(Scanning Elector Microscope)-----32
3-3-3 紅外線光譜儀(Fourier Transform Infraced RBS)------34
3-3-4 能量分散光譜儀(EDS)-------------------------------35
第四章 N-type多孔矽材料的蝕刻分析-------------------------36
4-1 垂直電場蝕刻法----------------------------------------36
4-2 垂直電場加霍爾效應蝕刻法------------------------------42
4-3 霍爾效應蝕刻法----------------------------------------60
4-4 垂直電場加照光蝕刻法與霍爾效應蝕刻法之比較------------84
4-5 磁場蝕刻法--------------------------------------------86
4-6 垂直電場加照光蝕刻法----------------------------------88
4-7 照光蝕刻法.-------------------------------------------91
4-8 垂直電場加霍爾效應與霍爾效應蝕刻法之分析--------------94
第五章 結論與未來展望-------------------------------------100
參考文獻--------------------------------------------------102
1. A. Uhir, Bell System Tech. J., 35, 333, 1956.
2. K. Barla, G. Bomchil, R. Herina, and J.C. Pfister, J. Cryst. Growth., Vol. 68, pp.721 (1984)
3. I. M.Young, M. I. J. Beale, and J.D. Benjamin, Appl. Phys. Lett., Vol. 46, pp.1133 (1985)
4. Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarash, J. electrochem. Soc. 122, 1351, 1975.
5. C. Pickering, M. J. J. Beale, D. J. Robbins, P. J. Pearson and R. Greef, J. Phys. C, Solid State Phys., 17, 6553, 1984.
6. McCord, P., Yau, S. L. and Bard., A. J., Science 257, 68, 1992.
7. G. Smestad and H. Ries, Solar Energy Materials Solar Cells 25, 51, 1992.
8. G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, Solar Cells 25, 51, 1992.
9. T. Taliercio, M. Dilhan, E. Massone, A. M. Gue, B. Fraisse, A. Foucaran, Thin Solid Films255, 310, 1995.
10. L. Z. Yu and C. R. Wie, Electronics Lett. 28, 911, 1992.
11. Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, J. Electrochem. Soc. 122, 1351, 1975.
12. R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys., Vol. 71, R1 (1992)
13. V. Lehmann and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett., Vol. 58, pp.856 (1991)
14. T. Unagami and K. Kato, Trans. IEE Jap., vol.98-A, No. 10, pp.
15. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, J. Cryst. Growth. , Vol. 73, pp.622 (1985)
16. L. N. Aleksandrov and P. L. Novikov, Thin Solid Films, Vol. 330, 102 (1998)
17. R. L. Smith, S. –F. Chuang, and S. D. Collins, J. Electron. Mater., Vol. 17, pp.533 (1988)
18. V. Lehmann and U. Gösele, “Porous silicon formation: a quantum wire effect,” Appl. Phys. Lett., Vol. 58, pp.856 (1991)
19. L. T. Canham, “Silicon quantum wire fabricated by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., Vol. 57, pp.1046 (1990)
20. J. Lin, L. Z. Zhang, B. R. Zhang, B.Q. Zong and G. G. Qin, “Stable blue light emission from oxidized porous silicon,” J. Phys: Condens Matter, Vol. 6, pp.565 (1994)
21. J. M. Rehm, G. L. McLendon, L. Tsybeskov and P. M. Fauchet, “How methanol affects the surface of blue and red emitting porous silicon,” Appl. Phys. Lett., Vol. 66, pp.3669 (1995)
22. H. D. Fuchs, M. Stutzmann, M. S. Brandt, M. Rosenbauer, J. Weber and M. Cardona, “Visible luminescence from porous silicon and siloxene,” Physica Scripta, T45, pp.309 (1992)
23. A. G. Cullis, L. T. Canham and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys., Vol. 82, pp.909 (1997)
24. R. P. Vasquez, A. Madhukar and J. A. R. Tanguay, “Spectroscopic ellipsometry and X-ray photoelectron-spectroscopy studies of the annealing behaviour of amorphous Si produced by Si ion-implantation,” J. Appl. Phys., Vol. 58, pp.2337 (1985)
25. D. J. Wolford, B. A. Scott, J. A. Reimer and J. A. Bradley, “Efficient visible luminescence from hydrogenated porous silicon,” Physica B, Vol. 117, pp.920 (1983)
26. S. M. Prokes, O. J. Glembocki, V. M. Bermudez, P. Kaplan, L. E. Friedersdorf and P. C. Searson, “SiHx excitation – an alternative mechanism for porous Si photoluminescence,” Physical Review B, Vol. 45, pp.13788 (1992)
27. M. B. Robinson, A. C. Dillon and S. M. George, “Porous silicon photoluminescence versus HF etching – no correlation with surface hydrogen species,” Appl. Phys. Lett., Vol. 62, pp.1493 (1993)
28. A. G. Cullis and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature, Vol. 353, pp.335 (1991)
29. Rita G. Lerner, George L. Trigg, “British Library Cataloguing in Publication Data,” pp.473 (1991)
30. 何宏哲, “多孔矽與氧化鋅堆疊的光致發光研究.” 國立台灣科技大學材料所碩士論文 (2005)
31. Alberto A. Sag¨u´es, John T. Wolan b, Agustin De Fex, Timothy J. Fawcett, “Impedance behavior of nanoporous SiC,” Electrochimica Acta., Vol. 51, pp.1656 (2006)
32. J. M. Lavine, S. P. Sawan, Y. T. Shieh and A. J. Bellezza, Appl. Phys. Lett. 62 pp.1099 (1993).
33. L. Tsybeskov and P. M. Fauchet, Appl Phys. Lett. 64, pp.1983 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top