跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/04 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑋澤
研究生(外文):Wei-Tse Hong
論文名稱:奈米碳管的密度調變與氧化釕沈積對超高電容器之效能的影響
論文名稱(外文):The effect of carbon nanotube density control and ruthenium oxide deposition for supercapacitor
指導教授:雷健明吳慧敏吳慧敏引用關係
指導教授(外文):Chien-Ming LeiHui-Min Wu
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:超高電容器氧化釕奈米碳管密度調變偏壓氮氣摻雜效應循環伏安法
外文關鍵詞:supercapacitorRuthenium oxidecarbon nanotubedensity controlbiasNitrogen doping effectcyclic voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:587
  • 評分評分:
  • 下載下載:139
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討奈米碳管的密度調變與電極反應物氧化釕的沉積法等效應對提升電化學超高電容器之性能的影響。此研究提供有效利用奈米碳管的高表面積特性,並配合多種奈米電極反應物在碳管上的附著機制以獲得較大反應面積近而提高電化學反應效率的研發結果。
有關奈米碳管的密度控制,是利用不同面積比之鐵-矽雙金屬,及不同含鐵成分的合金靶材,將催化劑鐵濺鍍於基板以做為成長奈米碳管之疏密性與準直性的調變。結果發現鐵-矽雙金屬面積比為3:1時,在濺鍍氧化釕後電容值可達42.3mF/cm2。奈米碳管的密度與準直性對提升電極材料之有效披覆表面積的影響,亦在本文中討論。
在電化學法沉積氧化釕電極材料的研究中,我們發現將沉積後的電極材料回火,有助於提升電子/離子傳輸。實驗得到回火溫度在200℃時,電容值與電流密度都有明顯的增加。以循環伏安法沉積反應物時亦觀察到氧化釕有效成膜披覆在奈米碳管管壁上,較直流電鍍法為佳。而脈衝電鍍能使氧化釕均勻的以顆粒狀成核於奈米碳管上。在偏壓濺鍍部份,我們觀察到加大偏壓,能使氧化釕之晶粒細化。奈米碳管生長時的氮氣調變,對氧化釕的沈積效果有相當顯著的影響,在氮氣流量約20 sccm以下時可得到最佳之電容效應。
最後,我們以簡單的電容封裝做電路測試,電容器在未完全封裝的情況,其全電極可在24小時的測試時間下,以600-2000 mV/sec的掃描速率可維持約略相等之電容值。
This thesis investigated the effect of the density control of carbon nanotubes (CNTS) and the deposition methods of ruthenium oxide on the capacitive performance of electrochemical super-capacitor. The research provides the experimental results of the high surface area utilization of CNTS and the influence of electrode nano-particle deposition methods on the efficiency of electrolytic reaction
The density of CNTS was altered by varying the catalysis concentration of alloy and the ratio of covered area on catalysis-metal surface. The value of capacitance changed with the ratio of iron-silicon bimetal area, and a value of 42.3mF/cm2 can be achieved at the ratio of 3:1. The influence of the density and the alignments of CNTS on the effective surface area for the electrode particle plating were discussed as well as the capacitive performance.
The deposition of electrode particles by the method of electrochemical plating was also studied. It was found that suitable annealing temperature enhanced the crystallization of the electrode material, which provides a better condition for ion-electron transport. Both capacitance and current density were found increased by the effect of annealing at temperature of 200℃. Besides, on the wall of CNTS was observed fully covered with the RuO2 membrane by the method of cyclic voltammetry deposition, and the surface area can be great promoted at the electrochemical reactant. In the pulse electro-deposition, ruthenium oxide particle was found nucleated in uniform grain on the surface of CNTS.
The effect of nitrogen doping during CNTS growth followed by ruthenium oxide deposition was also discussed in this thesis. An amount of defects was generated by nitrogen atom occupied on the substitutional site of carbon, and porous CNTS were created. Ruthenium nano-particle can be trapped in the holes with suitable size. A nitrogen flow rate at 20 sccm was observed to achieve the best capacitive performance of 28mF/cm2, comparing to three other flow rates which have been chosen.
Finally, a simple package was made for the capacitor to test the device performance. It was found that the full electrode can keep almost the same value of capacitance during the 24 hours test time at scanning rate of 600-2000 mV/sec.
誌謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅲ
目錄 Ⅳ
圖表索引 Ⅵ

第一章 緒論
1-1 超高電容器介紹…………………………………………………………………… 1
1-2 奈米碳管介紹……………………………………………………………………… 5
1-2-1 奈米碳管的製造方式……………………………………………………… 5
1-2-2 奈米碳管的生長機制……………………………………………………… 9
1-2-3 奈米碳管的特殊電學性質…………………………………………………11
1-2-4 奈米碳管的應用……………………………………………………………12

第二章 基本原理與文獻回顧
2-1 超高電容器之容電機制……………………………………………………………15
2-1-1 電雙層電容…………………………………………………………………15
2-1-2 偽電容………………………………………………………………………18
2-1-3 總電容量的計算……………………………………………………………19
2-1-4 電解質………………………………………………………………………20
2-2 奈米碳管的密度控制………………………………………………………………21
2-3 電鍍法………………………………………………………………………………24
2-3-1 循環伏安法…………………………………………………………………24
2-3-2 直流電鍍法…………………………………………………………………24
2-3-3 脈衝電鍍法…………………………………………………………………26
2-4 含水氧化釕之回火效應……………………………………………………………27
2-5 電鍍液之溫度效應…………………………………………………………………28
2-6 射頻濺鍍之偏壓效應………………………………………………………………29
2-7 奈米碳管之氮氣摻雜………………………………………………………………29
2-8 奈米碳管直接成長於電極板的優點………………………………………………32


第三章 實驗方法
3-1 實驗流程……………………………………………………………………………33
3-2 製程設備……………………………………………………………………………36
3-3 樣品分析設備………………………………………………………………………41
第四章 奈米碳管的密度控制
4-1 雙金屬的碳管密度控制……………………………………………………………43
4-2 合金靶的碳管密度控制……………………………………………………………46
4-3 奈米碳管的密度控制之CV分析 …………………………………………………54
4-4 奈米碳管的密度控制之未來展望…………………………………………………58
第五章 氧化釕的沈積方式與奈米碳管之結構改變
5-1 加偏壓之射頻濺鍍氧化釕…………………………………………………………59
5-2 電化學方式沈積氧化釕……………………………………………………………67
5-2-1 含水氧化釕之回火效應……………………………………………………67
5-2-2 循環伏安法沈積氧化釕之溫度效應………………………………………73
5-2-3 沈積法比較…………………………………………………………………74
5-2-4 脈衝電鍍法…………………………………………………………………79
5-3 奈米碳管氮氣摻雜效應……………………………………………………………82
5-3-1 以射頻濺鍍法沈積氧化釕粒子……………………………………………82
5-3-2 以循環伏安法沈積氧化釕…………………………………………………87
第六章 電容封裝與測試
6-1 測試方式……………………………………………………………………………91
6-2 小結…………………………………………………………………………………93
第七章 結論與未來研究方向
7-1 總結…………………………………………………………………………………99
7-2 未來研究方向…………………………………………………………………… 100
附錄一 電極材料整理表…………………………………………………………… 101
參考文獻……………………………………………………………………………… 102
1 S Arepalli, H Fireman, P Moloney JOM 57, 12 (2005)
2 www.maxwell.com
3 Iijima S. Nature. 354, 56 (1991)
4 Iijima S, Ichihashi T. Nature. 363,603 (1993)
5 Miao W, Xinqing W, Zhenhua Li, Ziyang L, Pimo He Materials Chemistry and Physics 97, 243-246(2006)
6 Yudasaka M, Komatsu T, Ichihashi T, et al. Chem phys Lett. 278,102,(1997)
7 Display Search, “Alternative display technology report:carbon nanotube technology”, Display Search, Texas, pp.25 (2001).
8 Takashi I., Shin-ichi H. Katsunori A. Kenjiro O. Mitsuhiro K. Japanese Journal of Applied Physics 45 (4A) 2872-2874,(2006)
9 Ta-Tung C., Yih-Ming L. Yuh S., Ha-Tao W., Ming-Der G. Materials Chemistry and Physics 97, 511-516(2005)
10 E. Terrado, M. Redrado, E. Munoz, W.K. Maser, A.M. Benito, M.T. Martinez* Materials Science and Enegineering C 26, 1185-1188(2006)
11 Ming Q. Ding, Xinghui Li, Guodong B., Jing J. Feng, Fuquan Z. Fujiang L. Applied Surface Science 251,201-204 (2005)
12 M. Taniguchi, H. Nagao, M. Hiramatsu, Y. Ando, M. Hori Diamond and Related Materials 14 ,855-858 (2005)
13 D. Luexembourg, G. Flamant, A. Guillot, D. Laplaze Materials Science and Engineering B 108 ,114-119(2004)
14 G. Flamant, M. Bijeire, D. Luxembourg J. Solar Energy Engineering 128, 25(2006)
15 Hsu WK, Terrones M, Hare JP, et al Chem Phys Lett. 262, 161(1996)
16 H Yokmich, F Sakai, M Ichihara N Kishimoto Nanotechnology 16 1204-1207, (2005)
17 Huang JY, Yasuda H, Mori H. Chem Phys Lett., 303,130(1999)
18 Vander Wal RL, Ticich TM, Curtis VE. Chem phys Lett., 323, 217(2000)
19 莊鎮宇 奈米碳管在熱裂解化學氣相沉積法中的成長機制研究 工程與系統科學系 清華大學 (2004)
20 E.F. Kukovitsky, S.G. L’vov, N.A. Sainov Chemical Physics Letters 317,65–70(2000)
21 Feng Ding, Arne Rose, Kim BoltonJournal of Chemical Physics., 121 (6) 2775-2779 (2004)
22 Mi C., Chieng-Ming C. , Horng-Show K. , Chia-Fu C. Diamond and Related Materials 12 , 1829–1835(2003)
23 Feng Ding, Arne Ros, Kim Bolton Chemical Physics Letters 393,309–313 (2004)
24 Donald A. Neamen Semiconductor Physics and Device (2003)
25 Frank S, Poncharal P, Wang ZL Science. 280,1744(1998)
26 LWorschech, D Hartmann, S Reitzenstein and A Forchel J. Physyics Condensed Matter 17 ,R775–R802 (2005)
27 M. Pourfath, E. Ungersboeck, A. Gehring , B.H. Cheong, W.J. Park, H. Kosina, S. Selberherr Microelectronic Engineering 81 ,428–433 (2005)
28 Michael Q. ,Julian S. Semiconductor Manfacturing Technology P305 (2001)
29 Z. H. Levine, A. R. Kalukin, M. Kuhn, C. C. R. Sean P. Frigo, Ian McNulty, Y. Wang,T. B. Lucatorto, B. D. Ravel, and C. Tarrio. Journal of Applied Physics, 87(9) 4483–4488 (2000)
30 Collins PG, Hersam M, Arnold M Physical Review Letters 86 (14): 3128-3131 (2001)
31 Heinze S, Wang NP, Tersoff J Physical Review Letters 95 (18): 186802 (2005)
32 Aaron A. Pesetski, James E. Baumgardner,a_ Erica Folk, John X. Przybysz, John D. Adam, and Hong Zhang Applied Physics Letters 88, 113103 (2006)
33 Takafumi KAMIMURA and Kazuhiko Japanese Journal of Applied Physics 45,1A, 338–340 (2006)
34 Bae-Horng C., Horng-Chih L., Tiao-Yuan H. Jeng-Hua W., Hung-Hsiang W., Ming-Jinn T. Tien Sheng C. Applied Physics Letters 88, 093502 (2006)
35 M. H. Yang, K. B. K. Teo, Laurent Gangloff, W. I. Mine Appled physics letters 88, 113507 (2006)
36 Graham, A. P., Diamond Relat. Mater. 13, 1296(2004)
37 W.P. Kang, J.L. Davidson, A. Wisitsora-at, D.V. Kerns, S.E. Kerns, Technical Digest of 13th IVMC, Guangzhou,China, 86 (1999)
38 A. Wisitsora-at, W.P. Kang, J.L. Davidson, D.V. Kerns, Appl. Phys. Lett. 71 3394. (1997)
39 K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, Appl. Phys. Lett. 79,1534 (2001)
40 K.B.K. Teo, IEE Rev. (April) 38. (2003)
41 N.S. Xu, S. Ejaz Huq Materials Science and Engineering R 48 47–189 (2005)
42 Fan-Guang Z., Chang-Chun Z., Weihua L., Xinghui L. Microelectronics Journal 37 ,495–499(2006)
43 A. Patil, R. Vaia, L. Dai Synthetic Metals 154, 229–232 (2005)
44 J.H. Park, J.S. Moon, J.H. Han, A.S. Berdinskiy, D.G. Kuvshinov, J.B. Yoo,C.Y. Park, J.W. Nam, J.H. Park, C.G. Lee, D.H. Choe Diamond & Related Materials 14, 1463 – 1468(2005)
45 Zhang Yuning, Lei Wei, Zhang Xiaobing, Wang Baoping Applied Surface Science 245 400–406(2005),
46 J ee Won J., Cheol Eui L., Chan lck O. Cheol Jin L. J. Applied Physics 98 ,074316 (2005)
47 Shi-chun M., Hao-lin T., Sgeng-hao Q., Mu P., Run-zhang Y. Carbon 44,762-767(2006)
48 M.K. Haas, J.M.Zielinski, G. Dantain, C.G. Coe, G.P. Pez, A.C. Cooper J. Mater. Res. 20,12(2005)
49 A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, K. Cho, A. Nilsson Phsical Review Letters 95,225507(2005)
50 Hansan L., Chaojie S., Lei Z., Jiujun Z., Haijiang W., David P. Wilkison, J. Power Sources 155, 95-110 (2006)
51 J. Prabhuram, T.S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang J. Phys. Chem. B 110,5245-5252 (2006)
52 Kunchan L., Jiujun Z., Haijiang W., David P. Wilkinson J. Applied Electrochemistry 36,507-522(2006)
53 H.Von Hel,holtz, Ann. Phys.(Leipzig)89, 211 (1853)
54 J.M. Kauffmann Modelisation Caracterisation Des Super-Condensateurs a Couche Double Electrique Utilises en Electronique de Puissance (2001)
55 Emmenegger, Ch., et al., J. Power Sources, 124, 321(2003)
56 G. Gouy, Ann. Phys., Pairs, 7, 129 (1917) ; J. de Phys., 9, 457 (1910)
57 Ming-Tai L., Jyun- Syun L., Jing- Jhou W., Sian-Jhang J., J. Chin. Colloid & Interface Soc., 27, 207-216 (2005)
58 O. Stern, Zeit. Elektrochem., 30 508 (1924)
59 B.E. Conway, J. Electrochem. Soc., 138, 1539 (1991)
60 B.E. Conway, V. Birss, and J. Wojtowicz, J. Power Sources, 66, 1 (1997)
61 Girija TC, Sangaranarayanan MV, Synthetic Metals 156 (2-4) 244-250 (2006),
62 Gupta V., Miura N., Materials Letters 60 (12),1466-1469 (2006)
63 Kim JH., Sharma AK., Lee YS., Materials Letters 60 (13-14), 1697-1701 (2006)
64 Zhou CF., Kumar S., Doyle CD., Chemistry of Materials 17 (8) 1997-2002 (2005)
65 Frackowiak E., Lota G., Machnikowaki Electrochimica Acta 51 (11) 2209-2214(2006)
66 Beguin F., Szostak K., Lota G., Advanced Materials 17 (19) 2380 (2005)
67 Grupioni AAF., Arashiro E., Lassali TAF., Electrochimica Acta 48 (4) 407-418 (2002)
68 Zhang ZA., Yang BC., Deng MG., Acta Chimica Sinica 62 (17) 1617-1620 (2004)
69 Nagarajan N., Humadi H., Zhitomirsky I., Electrochimica Acta 51 (15) 3039-3045 (2006)
70 Cao L., Lu M., Li HL., J. electrochemical Society 152 (5) A871-A875 (2005)
71 Cao L., Zhou YK., Lu M., Chinese Science Bulletin 48 (12) 1212-1215 (2003)
72 Cazzanelli E., Castriota M., Kalendarev R., Ionics 9 (1-2) 95-102 (2003)
73 J. P. Zheng, and T. R. Jow, J. Electrochem. Soc., 142, L6 (1995)
74 J. P. Zheng, P. J. Cygan, and J. R. Jow, J. Electrochem. Soc 142, 2699 (1995)
75 Hulicova D., Kodama M., Hatori H., Chemistry of Materials 18 (9) 2318-2326(2006)
76 Liu XM., Zhan L., Teng N., New Carbon Materials 21 (1) 2318-2326 (2006)
77 Wang YG., Chen L., Xia YY., J. Power Sources 153 (1) 191-196 (2006)
78 Mora E ., Blance C., Pajaares JA., J. Colloid and Interface Science 298 (1) 341-347 (2006)
79 Cottineau T., Toupin M., Delahaye T., Applied Physics A-Materials Science & Processing 82 (4) 599-606 (2006)
80 Wen S., Ye IH., Park J., Key Engineering Materials 277-279 703-707 (2005)
81 Ryu KS., Lee YG., Hong YS., Electrochimica Acta 50 (2-3) 843-847 (2004)
82 Ryu KS., Kim KM., Park NG., J. Power Sources 103 (2) 305-309 (2002)
83 S. Hadzi-Jordanov, H. Angerstein-Kozlowska, B. E. Conway, J. Electrochem Soc., 125, 1473 (1978)
84 Sarangapani S., Tilak B., Chen C. J. Electrochem Soc., 143 3791 (1996)
85 Chuang PY, Hu CC, MATERIALS CHEMISTRY AND PHYSICS 92 (1) 138-145 JUL 15 (2005)
86 Prasad KR, Miura N, ELECTROCHEMISTRY COMMUNICATIONS 6 (10) 1004-1008 OCT (2004)
87 Grupioni AAF, Arashiro E, Lassali TAF, Electrochimica Acta 48 (4) 407-418 DEC 20 (2002)
88 Devaraj S, Munichandraiah N, Electrochemical and Solid State letters 8 (7) A373-A377 (2005)
89 Bao SJ, He BL, Liang YY, Zhou WJ, Li HL, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 397 (1-2) 305-309 APR 25 (2005)
90 Lee CY, Tsai HM, Chuang HJ, Li SY, Lin P, Tseng TY, Journal of the Electrochemical Society 152 (4) A716-A720 (2005)
91 Xingyan Wanga, Xianyou Wanga,, Weiguo Huang, Sebastian PJ,Sergio Gamboa, Journal of Power Sources 140 (1) 211-215 JAN 10 (2005)
92 Reddy RN, Reddy RG, Journal of Power Sources 124 (1) 330-337 OCT 1 (2003)
93 Prasad KR, Miura N, Electrochemical and Solid State Letters 7 (11) A425-A428 (2004)
94 Zhou HH, Chen H, Luo SL, Lu GW, Wei WZ, Kuang YF, Journal of Solid State Electrochemistry 9 (8) 574-580 AUG (2005)
95 Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez-Romero P, Advanced Functional Materials 15 (7) 1125-1133 JUL (2005)
96 Wang XF, Wang DZ, Liang J, Acta Physico-Chimica Sinica 21 (2) 117-122 FEB (2005)
97 de Souza AR, Arashiro E, Golveia H, Lassali TAF, Electrochimica Acta 49 (12) 2015-2023 MAY 15 (2004)
98 Kim IH, Kim JH, Kim KB, Electrochemical and Solid State Letters 8 (7) A369-A372 (2005)
99 Ke YF, Tsai DS, Huang YS, Journal of Materials Aterials Chemistry 15 (21) 2122-2127 (2005)
100 Wang CC, Hu CC, Electrochimica Acta 50 (13) 2573-2581 (2005)
101 E. Rraymudo-pinero, V. Khomenko, E. Frackowiak, F. Beguin, Journal of the electrochemical society, 152 (1) A229-A235 (2005)
102 Jong Hyeok Park, Jang Myoun Ko, O. ok park, Journal of the electrochemical society, 150 (7) A864-A867 (2003)
103 Kuo-Hsin Chang, Chi-Chang Hu., Journal of the electrochemical society 151 (7) A958-A964 (2004)
104 A. Kenneth Graham, H.L. Pinkerton, Electroplating engineering handbook (1955)
105 Mordechay Schlesinger, Milan Paunovic, Modern Electroplating, (4th Edition) (2000)
106 www.sunwingtechnology.com
107 T.W. Ebbsen, Carbon Nanotubes, Preparation and Properties, Boca Raton, FL, (1997)
108 Chi-Chang Hu, Yao-Huang Huang, Electrochemical Acta 46 3431-3444 (2001)
109 W.Pell, T. C. Liu, B.E. Conway, Electrochemical Acta, 42, 3541-3552 (1997)
110 B.E. Conway, Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum, New York, (1999)
111 Wei-Chuan Fang, Carbon Nanotube Based Nanocomposites for Miniaturized Supercapacitor Applications, National Tsing Hua University (2006)
112 Shintaro Sato, Akio Kawabata, Daiyu Kondo, Mizuhisa Nihei, Yuji Awano, Chemical Physics Letters 402 149-154 (2005)
113 K.B.K. Teo, M.Chhowalla, G.A.J. Amaratunga, W.I. Miline, P.Legagneux, G. Pirio, L. Gangloff, D. Pribat, V.Semet, Vu. Thien Binh, W.H. Bruenger, J. Eichholz, H. Ahmed, J. Vac. Sci. Tech. B 21(2) 693-697 (2003)
114 Shaoming Huang, Alber W. H. Mau, J. Phys. Chem. B, 107, 8285-8288 (2003)
115 Yo-Sep Min, Eun Ju Bae, Kwang Seok Jeong, Young Jin Cho., Jung-Hyun Lee, Won Bong Choi, Gyeong-Su Park, Advanced Materials 15 (12) 1019-1022 (2003)
116 Soo-Hwan Jeong, Ok-Joo Lee, Kun-Hong Lee, Sang-Ho Oh, Chan-Gyung Park, Chem. Mater., 14 10 (2002)
117 Jong Hyung Choi, Tae Young Lee, Sun Hong Choi, Jas-Hee Han, Ji-Beom Yoo, Chong-Yun Park, Taewon Jung, SeGi Yu, Whikum Yi, In Teak Han, J.M. Kim Thin Solid Films 435 318-323 (2003)
118 Y. Tu, Yuehe Lin, Z.F. Ren, Nano Letters 1 (3) 107-109 (2003)
119 Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Applied Physics Letters 80 (21) 4018-4020 (2002)
120 Chris Bower, Wei Zhu, Sungho Jin, Otto Zhou, Applied Physics Letter, 77 (6) 830-832 (2000)
121 Jung-Hsien Yen, Ing-Chi Leu, Min-Tao Wu, Chien-Chin Lin, Ming-Hsiung Hon Electrochemical and Solid-State Letters, 7 (8) H29-H31 (2004)
122 J.E. Jang, S.N. Cha, Y. Choi, G.A.J. Amaratunga, D.J. Kang, D.G. Hasko, J.E. Jung, J.M. Kim, Applied Physics Letters 87 (26) 263103 (2005)
123 Dalibor Buc, Milan Mikula, Denis Music, Ulf Helmersson, Ping Jin, Setsuo Nakao, Kwok Yan Li, Po Wan Shum, Zhifeng Zhou, Maria Caplovicova, Journal of Electrical Engineering, 55 1-2 39-42 (2004)
124 H. Matino, T. Ushiroda, IBM J. Res. Develop. November 576-579 (1977)
125 E. Kolawa, F.C.T.SO, W. Flick, X.A. Zhao, E. T-S. Pan, M-A. Nicolet, Thin Solid Films, 173 217-224 (1989)
126 Chi-Chang Hu, Wei-Chun Chen, Kuo-Hsin Chang Journal of The Electrochemical Society, 151 (2) A281-A290 (2004)
127 D.A. McKeown, P.L. Hahans, L.P.L. Carette, A.E. Russel, K.E. Swider and D.R. Rolison, J. Phys. Chem. B, 103 (23) 4825(1999).
128 Chi-Chag Hu, Yao-Huang Huang, Electrochimica Acta 46 (22) 3431-3444 (2001)
129 Hansung Kim, Nalini P. Subramanian, Branco N. Popov, Journal of Power Souces, 138 14-24 (2004)
130 Jean-Claude Puippe, Frank Leaman, Theory and Practice of Pulse Plating, American Electroplaters and Surface Finishers Society (1986)
131 Q. Jiang, Y. Zhao, X.Y. Lu, X.T. Zhu, G.Q. Yang, L.J. Song, Y.D. Cai, X.M. Ren, L. Qian, Chemical Physics Letters 410 307-311 (2005)
132 Stephen Maldonado, Stephen Morin, Keith J. Stevenson, Analyst, 131 (2) 262-267 (2006)
133 C.L. Sun, L.C. Chen, M.C. Su, L.S. Hong, O. Chyan, C.Y. Hsu, K.H. Chen, T.F. Chang, L.Chang, Chem. Mater., 17, 3749 (2005)
134 B. Grzyb, J. Machinkowski, J.V. Weber, A. Koch, O. Heiniz, Journal of Analytical and Applied Pyrolysis 67 77 (2003)
135 E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Beguin, Electrochmica Acta 51 2209-2214 (2006)
136 Krzysztof Jurewicz, Krzyszof Babel, Artur Ziolkowski, Helena Wachowska, Mieczyslaw Kozlowski, Fuel Processing Technology 77-78 191-198 (2002)
137 C.L. Sun, W.C. Fang, C.H. Wang, Y.Y. Horng, J.H. Huang, H.C. Shin, C.C. Chen, L.C. Chen, K.H. Chen, Taiwan Nano Tech. Poster (2005)
138 A.G. Kudashov, A.V. Okotrub, L.G..Bulusheva, I.P. Asanov, Yu. V. Shubin, N.F. Yudanov, L.I. Yudanova, V.S. Danilovich, O.G. Abrosimov, J. Phys. Chem. B, 108 (26) 9048-9053 (2004)
139 B. Grzyb, J. Machinkowski, J.V. Weber, J. Ana., Appl. Pyrolysis. 72 121-130 (2004)
140 Francesco Lufrano, Pietro Staiti, Electrochemical and Solid-State Letters, 7 (11) A447-A450 (2004)
141 Suk-Fun Chin, Suh-Chem Pang, Marc A. Anderson, Journal of the Eectrochemical society, 149 (4) A379-A384 (2002)
142 Han-Ki Kim, Tae-Yeon Seong, Jae Hong Lim, Young-Woo Ok, Won il Cho., Young Soo Yoon, J. Vac. Sci. Technol. B, 20 (5) Sep/Oct 1827-1832 (2002)
143 P.L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, V. Antonucci, Solid State Ionics 125 431-437 (1999)
144 Zhi-Gang Shao, Prabhuram Joghee, I-Ming Hsing, Journal of Membrane Science 229 43-51 (2004)
145 M.S. Michael, S.R.S. Prabaharan, Journal of Power Sources, 136 (2) 250-256 (2004)
146 Han-Ki Kim, Suk-Ho Cho, Young-Woo Ok, Tae-Yeon Seong, Young Soo Yoon, J. Vac. Sci. Technol. B 21 (3) May/Jun (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top