(3.230.143.40) 您好!臺灣時間:2021/04/19 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭伊瑈
研究生(外文):Yi-Jou Peng
論文名稱:氟化物對防水透濕水性PU接著劑物性影響之探討
論文名稱(外文):The effect of the Fluoro-compound on the physical property of water-resistent vapor permeable polyurethane ionomer
指導教授:趙鼎揚
指導教授(外文):D.Y.Chao
學位類別:碩士
校院名稱:中國文化大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:氟化物
外文關鍵詞:fluoro-compound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:554
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
甲苯二異氰酸酯與矽氧化合物(KBM-603)氟化合物(Fluoro-compound)與其他添加劑反應成水性PU接著劑之分子的結構,已經 FT-IR光譜證實。在水溶液中,水性PU接著劑的表面張力會隨矽氧化合物濃度之增高而變大,這是因為吸附在水溶液表面上的非極性排列較整齊之故。實驗結果顯示,水性PU接著劑的黏度和平均分子粒徑會隨矽氧化合物或是氟化合物濃度之增高而變大,原因是水性PU接著劑分子上的極性基的相互作用,而使得水性PU接著劑的黏度和分子的平均粒徑變大。實驗結果也指出,水性PU接著劑薄膜的拉應力(tensile strength)會隨氟化合物濃度之增高而變小,這是因為水性PU接著劑分子本身的作用力增強,結果導致水性PU接著劑薄膜的拉應力變小。在相同的實驗條件下,水性PU接著劑薄膜的伸長率(elongation)會分別隨矽氧化合物和氟化合物濃度之增高而變小,這是因為水性PU接著劑分子本身的作用力(intramolecular interaction)增大,使得分子形成緊縮形或微泡型的結構,因而造成水性PU接著劑薄膜的伸長率變小。
水性PU接著劑薄膜的硬度,條件會分別隨著矽氧化合物和氟化合物濃度增高而變硬。這可能是因為分子排列較整齊之故。而水性PU樹脂薄膜的透濕度條件也會分別隨氟化合物和矽化合物濃度增高而變大,這是因為接枝在水性PU樹脂分子上的極性基增多之故。含矽化合物的PU接著劑薄膜的透濕度要比含氟化合物的PU接著劑薄膜的透濕度高,這是因為含矽化合物的極性基要比含氟化合物的極性基多之故。至於改變氟化合物之濃度而固定其他組成成分,所合成的水性PU接著劑薄膜的剝離強度條件會隨氟化合物之濃度增高而變大,這可能是因為水性PU接著劑分子主鏈上的極性基增多,而使得分子的架橋力增強之故。
The reaction of toluene diisocyanate with fluoro compound , silicon compound and other additives to form the conformation of water-based PU adhesive has been proven by IR spectra . In aqueous solution , the surface tension of water-based PU adhesive increased with increasing concentration of the fluoro compound . This is because the hydrophobics adsorbed at the surface of water became even more ordered. Experimental results showed that both viscosity and average particle size for water-based PU adhesive molecule in aqueous solution clearly increased with increasing concentration of silicon compound or fluoro compound , as a result of the intermolecular interaction of the hydrophobics linked to water-based PU adhesive molecules . Experimental results also indicated that the tensile strength of the film made by the water-based PU adhesive molecule decreased with increasing concentration of the fluoro compound . The strong intramolecular interaction of the water-based PU adhesive molecule itself resulted in decreasing the tensile strength of this film . Under the same experimental condition , the elongation of the film made by the water-based PU adhesive molecule apparently decreased with increasing concentration of the silicon compound and the fluoro compound , respectively . This maybe due to compact conformation or micelle structure formed , resulting from the strong intramolecular interaction . That the elongation of the film decreases .

The hardness of the film made by the water-based PU adhesive molecule appeared to become harder as the concentration of the silicon compound and the fluoro compound , respectively .

This is because the arrangement of the molecules becomes even more ordered . Apparently , the water-vapor permeability to the film made by the wayer-based PU adhesive molecule was seem to increase with increasing concentration of the fluoro compound and the silicon compound respectively , as a result of more hydrophilics attached to the backbone of the water-based PU molecule .However , the water-vapor permeability was better for the silicon-based PU adhesive ionomer than for the fluror-based PU adhesive ionomer . Since the silicon-based PU adhesive ionomer has more hydrophobic groups , therefore the water-vapor permeability of the film increases . It clearly indicated that the peel strength of the film made by the water-based PU adhesive molecule increased with increasing concentration of other ingredients . This may be due to increased crosslinking capability resulting from more hydrophilic groups linked to the backbone of the PU ionomer molecule .
中文摘要………………………………………………………….........i~ii
英文摘要…………………………………..………………………..iii~iiii
第一章 前言……….…………………………………………………….1
第二章 理論部分….…………………………………………………….3
2.1PU離子體…………………………………………………………….4
2.1-1 PU離子體的合成反應…………………………………………….6
2.2 原料………………………………………………………………….8
2-2-1 異氰酸酯(Isocyanate)…………………………………………8
2.2-2 多元醇(Polyol)………………………………………………….16
2.2-3 鏈延長劑(linkage extender)……………………………………...17
2.2-4 催化劑(catalyst)………………………………………………….18
2.2-5內部乳化劑(Internal emulsifiers)………………………………...19
2.2-6 架橋劑……………………………………………………………21
2.2.-7 溶 劑 的 選 擇………………………………………………...22
2.3 PU離子體的製造…………………………………………………...23
2.3-1溶液法(solution process)…………………...……………………..23
2.3-2預聚物混合法(prepolymer mixing process)……………………...24
2.3-3熱熔法(melt dispersion process)……………………………….....25
2.4水性PU的製造方法有兩種……..…………………………………27
2.4-1丙酮製程………………………………………………………….28
2.4-2預聚物混合法(prepolymer mixing process)……………………….29
2.5離基聚合反應…………………………………………………….30
2.5-1開始過程(Initiation)………………………………………………30
2.5-2 生長過程(Growth;Propagation)…………………………………31
2.5-3終結過程(Termination )………………………………………….31
2.6接著劑……………………………………………………………….33
2.6.1 接著劑的應用……………………………………………………33
2.6.2 接著劑之選擇……………………………………………………34
2.6.3 黏著理論…………………………………………………………35
2.6.4 黏著機制…………………………………………………………37
2.6.5 水性PU黏著劑的物性…………………………………………40
2.6.6 黏著強度…………………………………………………………42
第三章 實驗部份………………………………………………………43
3.1實驗之分析儀器設備………………………………………………43
3.1-1實驗裝置………………………………………………………….43
3.1-2 分析儀器………………………………………………………...44
3.1-3實驗藥品………………………………………………………….45
3.2水性溶液製備…………………………………….…………………47
3.2-1 水性PU樹脂乳液之薄膜之製備…………………………..….48
3.3物性之測試…………………………………………………………49
3.3-1 紅外線光譜儀之測試……………………………………………49
3.3-2 表面張力之測試(Wilhelmy法)…………………………...……50
3.3-3 黏度之測試………………………………………………………51
3.3-4 機械性質之測試…………………………………………………52
3.3-5 平均粒徑及擴散係數之測試……………………………………54
3.3-6 黏著之測試……………………………..……………………..…55
3.3-7 水性PU中透濕度之測試方法…………………………………58
第章四、結果與討論……………………………………………………59
4.1 IR光譜探討…………………………………………………………59
4.2 物性之探討………………………………………………………...66
4.2-1表面張力(Surface tension)之探討……………………………….66
4.2-2黏度(Viscosity) 之探討…………………………………………70
4.2-3硬度(Hardens) 之探討…………………………………………74
4.2-4拉應力(Tensile strength)之探討……………………………….76
4.2-5伸長率(Elongation)之探討…………………………………….…80
4.2-6平均粒徑(Number average particle)之探討…………………….84
4.2-7剝離強度(Peel strength)之探討………………………………... 97
4.2-8透溼度(water-vapor permeability)之探討………………...101
4.2-9吸濕度(Water absorption)之探討…………………………..105
第五章 結論…………………………………………………………..109
參考文獻………………………..……………………………………..111
參考文獻
1.YM Kuo, KY Yu, HC Lin, NH Wang, CP Chwang, DY Chao. J. Appl. Polym. Sci. 1998; 69: 2097-2105.
2.JJ Lee, RM Shieh, HH Chang, DY Chao. JJ. Appl. Polym. Sci. 1996; 60: 2265-2271.
3.JJ Lee, ZK Chi, YM Kuo, DY Chao. J.Appl. Polym. Sci. 1995; 57: 1005-1011.
4.岩田敬治著,賴耿陽譯著,“聚尿脂樹脂PU 原理與實用”,復漢出版社。
5.D.Dieterich, H. Reiff, Angew. Makromol. Chem.,p.26,85(1972).
6.Perry, E. M, Aqueous polyurethane-The time is Right, AATCC symposium, Coated Fabvics: Meeting the Challenges of the 90’s,p.74-78, Apr(1992).
7.大澤晃,“塗料工業與環境問題”,JETI,39(11),p.90-93(1991).
8.小西敏夫,“水溶性PU 樹脂之纖維加工,加工技術”.
9.Gunter Oertel,“polyurethane Handbook”,Carl Hanser Verlag, Muenchen,(1985).
10.T.A.Time,K.M.Mukhina, E.A.Sidorovich and T.S.Dmitrieva,“Inter polymer Science and Technology”,vol,19,NO.11, T/47(1992).
11.K. H. H. Y. C. Chiang, Interpenetrating polymer ne of poly-urethamesand epoxy resin, I”,Die Angewande Makromolekulare Chemie, 193, (1991).85.
12.陳雲,陳約良,“第3 屆高分子研討會論文專集”,第六卷,p.227.
13.Lambourne, R. Morgan: Morgan, N. “Recent advances in crosslinking and curing, 3(1),1992.
14. J. B. Clarke, “Additives for Water-Bawed Coatings”,P. P. Colour Journal 1881(4290),1991.
15.山崎九彌,“聚胺基甲酸酯系黏著劑”,接著技術(1991.
16.J. Buandrup and E. H. Immergut polymer Handbook, New York.(1975)
17.小西謙三,黑木宣同,“工業合成染料化學”,復漢出版社印行.
18.李見峰,“文化碩士論文”,p.25-27(1993).
19.O. Lorenz, V. Budde and K. H. Reimnoeller, Angew. Makromol. Chem., 87,35 (1980).
20.J. W. Rosthauser, K. Nacthtkamp, In: Advances in urethane Science and Technology, Vol.10, p.121 (1987).
21.D. Diterich, Angew. Makromol. Chem., 98, 133 (1981).
22.O. Lorenz, H. Hick, Angew. Makromol. Chem., 72, 115 (1978).
23.宋木林,Chemistry (The Chinese chem.. Soc., TAIPEI) Mar., Vol. 54, No.1, pp. 162-174 (1996).
24.R. A. Ward and E. L. Wimmel in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Edn., Vol, 14 (New York: John Wiley).86.
25.G. G. Guilbault, Practical Fluorescence (New York: Marcel Dekker, 1973).
26.S. Speiser, J. Photochem. 22, 195 (1983).
27.I. I. Kalosha and V. A. Tokachev, Zhur. Prikl. Spektroskopii, 14, 537 (1971).
28.陳玉春,“文化碩士論文”,(1998).
29.詹武忠,“清大博士論文”,p.17-24(1988).
30.D. J. David, H. B. Staley, “Analytical chemistry of the polyurethanes”, High polymers, Vol,XVI, par tⅢ,p.34 (1969)..
31.E. pretsch, T. Clerc, J. Seibl, W. Simon,“Table of Special Data for structure Determination of Organic Compounds”,2ed edition, Springer Verlag(1989)
32.Skoog West 著,賀孝雍譯,“儀器分析”,p.289-292,曉園出版社,(1990).
33..“The Conact Angle & Meazuring System”,KRUSS K12C, Germany (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 毛漢光,(2002.12),〈平等概念與平等實際─中國人權史平等權研究之一〉,《佛光人文社會學刊》,第3期,頁137-179。
2. 王素琴,(1999.3),〈從女性勞動保護至兩性工作平等理念之實現〉,《勞資關係月刊》,17:1,頁16-32。
3. 王惠玲,(1993,5),〈由勞動法觀點論工作場所性騷擾〉,《勞工行政》,第61期,頁21-26。
4. 王素琴,(1996.3),〈兩性工作平等立法之淺探〉,《勞資關係月刊》,第167期,頁17-25。
5. 王如玄,(1997.12),〈性別就業歧視評議及法律救濟實務〉,《律師雜誌》,第219期,頁71-83。
6. 王文霞,(1998.12),〈女工會聯盟與全國女工同盟(1890-1920)─近代英國的婦女與勞工運動〉,《新史學》,9:4,頁39-98。
7. 李來希,(1995.4),〈談企業內性別歧視條款防止之道〉,《勞工行政》,第84期,頁40-44。
8. 李惠宗,(1989),〈平等權之概念〉,《憲政時代》,14:1,頁12-40。
9. 林心如,(1998.11),〈聯合國與女性人權〉,《新世紀智庫論壇》,第四期,頁22-33。
10. 林明珠,(2002.3),〈淺論就業歧視之禁止-我國法律之規定與實務問題探討〉,《全國律師》,6:3,頁16-25。
11. 林欽明,(1998.1),〈同工同酬V.S同值同酬〉,《勞資關係》,16:9,頁7-15。
12. 周德旺,(1995),〈歐體勞工性別歧視之研究〉,《美歐月刊》,10:10,頁89-107。
13. 高長,(1993.10),〈台灣地區婦女就業與性別歧視之實證研究〉,《臺灣銀行季刊》,44:4,頁223-247。
14. 郭玲惠,(1997.12),〈我國婦女勞動法制之探視〉,《律師雜誌》,第219期,頁51-70。
15. 郭玲惠,(1998.1),〈男女工作平等權與女性勞工權益之保障〉,《勞工行政》,第117期,
 
系統版面圖檔 系統版面圖檔