跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 17:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張筱玉
研究生(外文):Shiao-Yu Chang
論文名稱:醇液種類、直鏈澱粉含量與超音波作用對酸醇處理玉米澱粉理化性質之影響
論文名稱(外文):Effects of alcohol type, amylose content and ultrasonication on physicochemical properties of acid-alcohol treated corn starches
指導教授:張永和張永和引用關係
指導教授(外文):Yung-Ho Chang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:102
中文關鍵詞:直鏈澱粉含量醇液種類超音波作用酸醇處理
外文關鍵詞:amylose contentultrasonicationacid-alcohol treatmentalcohol type
相關次數:
  • 被引用被引用:0
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對糯性、一般及高直鏈玉米澱粉於含0.36%鹽酸之單一醇液 (甲醇、乙醇、異丙醇、正丁醇)或甲醇以等比例(50%, v/v)混合其他碳數醇液 (乙醇、異丙醇、正丁醇)中進行酸醇處理 (45 °C, 1小時)或酸醇處理配合超音波 (15kHz ± 50Hz, 2600 W/cm2)作用,並測定澱粉之顆粒結構、分子特性、溶解度、成糊特性及糊化熱性質,以探討不同醇液種類、直鏈澱粉含量與超音波作用對玉米澱粉理化性質之影響。結果顯示,三種玉米澱粉經不同單一醇液之酸醇處理後,其澱粉顆粒外觀及偏光特性均無明顯變化,然顆粒內部則出現明顯裂痕,且平均粒徑略有下降之趨勢。經不同單一醇液酸醇處理之糯性、一般及高直鏈玉米澱粉其總 (F1+F2)重量平均聚合度 (weight average degree of polymerization, DPw)均明顯下降,其降解程度分別為34.4-60.5%、66.4-78.8%及53.5-85.7%,以經甲醇之處理者最低,而經正丁醇之處理者為最高。酸醇處理澱粉之平均鏈長亦有下降之趨勢。除糯性玉米澱粉之碘親合力 (iodine affinity, IA)外,澱粉之IA、與碘結合之最大吸收波長 (λmax)、成糊黏度均低於未經處理者,且以經甲醇之處理者最高,而經正丁醇之處理者為最低;然澱粉之糊化溫度範圍與溶解度的改變則相反。DPw (F1+F2)與平均鏈長降解的程度、IA、λmax與成糊黏度下降的程度、溶解度與Tr增加的程度均隨單一醇碳數之增加而增加。玉米澱粉經甲醇以等比例混合其他碳數醇液酸醇處理後,澱粉理化性質改變的程度均介於經單一甲醇與乙醇之酸醇處理者之間,且隨與甲醇混合之醇液碳數的增加,澱粉理化性質改變的程度隨之增加。三種玉米澱粉經不同醇液種類之酸醇處理後,澱粉之log DPw與系統之介電常數計算值呈現一次線性關係 (r>0.890; p<0.01)。此結果顯示,玉米澱粉於不同醇液酸醇處理對其分子降解程度顯著地受系統之介電常數的影響。於相同醇液中,發現澱粉經酸醇處理並配合超音波作用後,澱粉之糊化熱焓值高於其經酸醇處理者 (p<0.001);且一般及高直鏈玉米澱粉經酸醇處理並配合超音波作用後,直鏈澱粉鏈長小於其經酸醇處理澱粉者 (p<0.05)。此結果指出,超音波作用有助於有助於玉米澱粉於酸醇處理過程中韌化作用 (annealing)的程度及直鏈澱粉分子的降解。由貢獻率之結果得知,澱粉之分子特性及理化性質的不同主要受澱粉種類及醇液種類的影響。除支鏈澱粉分子大小 (F1之DPw)以醇液種類的貢獻率 (81.5%)大於澱粉種類者(5.1%)外,其他性質的參數均以澱粉種類之貢獻率 (44.6~99.8%)大於醇液種類者 (0.0~20.7%)。
Corn starches (waxy, normal corn and Hylon VII) treated at 45 °C for 1 h in different alcohols (methanol, ethanol, 2-propanol, 1-butanol; 50% (v/v) ratio of methanol and ethanol, 2-propanol or 1-butanol) containing 0.36% HCl, either without or with ultrasonication (15kHz ± 50Hz, 2600 W/cm2), were examined for elucidating the effects of ultrasonication on the physicochemical properties of treated starch. Results showed that no obvious change on the granule morphology and ‘Maltese cross’ pattern of corn starches after acid-alcohol treated in single alcohol. However, the fissure was found inside the granules and the average granule size of treated starches decreased slightly. Weight average degree of polymerization (DPw) of waxy, normal corn and Hylon VII starches after acid-alcohol treated in single alcohol decreased obviously, and the decrease of average DPw were 34.4-60.5%, 66.4-78.8% and 53.5-85.7%, respectively. Among the treated starches, the acid-methanol treated starch had the highest average DPw and the acid-butanol treated starch had the lowest. Furthermore, The average chain length of acid-alcohol starches decreased. The iodine affinity (IA), λmax and pasting viscosity of acid-alcohol starches treated in single alcohol decreased with increasing carbon number of single alcohol except the IA of waxy corn starch. However, the change of solubility and gelatinization temperature range was opposite. The variations of physicochemical properties of starch after treated in mixed alcohol were between that of starch treated in methanol and ethanol, and increased with the amount of the higher carbon number of alcohol that mixed with methanol. The log DPw of acid-alcohol treated waxy, normal corn and Hylon VII starch in different alcohols linearly correlated with dielectric constant of the system (r&gt;0.890; p&lt;0.01). Therefore, the dielectric constant of system is a good index to estimate the degradation of corn starches. In the same alcohol, the enthalpy of acid-alcohol-ultrasonication treated starch was higher than the counterpart acid-alcohol treated starch (p&lt;0.001), but the amylose content of normal corn and Hylon VII starch after acid-alcohol-ultrasonication treated in the same alcohol was lower than the counterpart starch after acid-alcohol treated (p&lt;0.05). The results showed that ultrasonication was able to enhance annealing and amylose degradation of corn starch during acid-alcohol treatment. According to the contribution ratio, the effects of starch and alcohol type were more dominant on molecular and physicochemical properties of treated starches. The contribution ratio of starch type for all properties (ranged from 44.6 to 99.8%) was higher than that of alcohol type (ranged from 0.0 to 20.7%), except for the DPw of F1 (the contribution ratio of starch type was 5.1 %, and 81.5% for alcohol type).
中文摘要……………………………………………………………I
英文摘要……………………………………………………………III
目錄…………………………………………………………………V
表目錄………………………………………………………………VIII
圖目錄………………………………………………………………X
前言…………………………………………………………………1
文獻回顧……………………………………………………………3
一、酸水解澱粉……………………………………………………3
(一) 澱粉酸水解之機制……………………………………….…3
(二) 酸水解澱粉之降解型態…………………………………….4
(三) 酸水解對澱粉性質之影響………………………………… 5
1. 顆粒型態及結構……………………………………………… 5
2. 分子特性…………..………………………………………… 5
3. 流變性質與成糊特性………………………………………… 6
4. 糊化熱性質…………………………………………………… 7
二、酸醇處理澱粉……………………………………………… 8
(一) 澱粉酸醇處理之降解機制………………………………… 9
(二) 酸醇處理對澱粉性質之影響……………………………… 9
1. 顆粒型態及結構..………………………………………….. 9
2. 分子特性…………………………………………………… 10
3. 溶解度與成糊特性………………………………………… 11
4. 糊化熱性質………………………………………………… 12
三、超音波……………………………………………………… 13
(一) 超音波簡介……………………………………………… 13
1. 何謂超音波………………………………………………… 13
2. 超音波的種類……………………………………………… 13
3. 超音波的降解作用………………………………………… 14
(1) 機械性之剪力作用……………………………………….. 14
(2) 渦泡效應………………………………………………….. 14
(3) 自由基作用……………………………………………….. 15
(二) 超音波處理對澱粉性質之影響……………………………15
1. 表面結構…………………………………………………… 16
2. 分子特性…………………………………………………… 16
(三) 超音波作用對多醣降解之研究……………………………17
四、溶劑之特性………………………………………………… 18
五、貢獻率……………………………………………………… 20
材料與方法……………………………………………………… 21
一、實驗材料…………………………………………………… 21
(一) 糯性玉米澱粉及高直鏈玉米澱粉…………………………21
(二) 一般玉米澱粉…………………………………………… 21
二、樣品之製備………………………………………………… 21
(一) 酸醇處理樣品…………………………………………… 21
(二) 酸醇處理配合超音波樣品……………………………… 23
三、樣品理化性質之測定……………………………………… 23
(一) 成分分析………………………………………………… 23
1. 水分、粗脂質、粗蛋白含量及灰分含量………………… 23
2. 碘親合力……………………………………………….….. 23
(二) 平均粒徑………………………………………………… 25
(三) 與碘結合之最大吸收波長……………………………… 25
(四) 偏光十字性之觀察……………………………………… 25
(五) 顆粒外觀及剖面觀察…………………………………… 25
(六) 分子量分布……………………………………………… 26
(七) 鏈長分布………………………………………………… 27
(八) 溶解度…………………………………………………… 28
(九) 成糊特性………………………………………………… 28
(十) 糊化熱性質……………………………………………… 28
四、統計分析…………………………………………………… 29
結果與討論……………………………………………………… 30
一、未處理玉米澱粉之純度及直鏈澱粉含量………………… 30
二、單一醇之酸醇處理………………………………………… 30
(一) 回收率、平均粒徑、碘親合力及與碘結合之最大吸收波長………………………………………………………………… 30
(二) 顆粒結構及偏光十字性之觀察………………………… 33
1. 顆粒結構觀察…….………………………………………… 33
2. 偏光十字性之觀察………………………………………… 35
(三) 分子特性………………………………………………… 39
1. 分子量分布………………………………………………… 39
2. 鏈長分布…………………………………………………… 42
(四) 溶解度…………………………………………………… 44
(五) 成糊特性………………………………………………… 47
(六) 糊化熱性質……………………………………………… 48
三、混合醇之酸醇處理………………………………………… 51
(一) 回收率、平均粒徑、碘親合力及與碘結合之最大吸收波長………………………………………………………….………51
(二) 分子特性………….……………………………………… 53
(三) 溶解度…………………………………………………… 57
(四) 成糊特性………………………………………………… 57
(五) 糊化熱性質……………………………………………… 57
四、溶劑性質與澱粉理化性質之相關………………………… 61
五、超音波作用對玉米澱粉酸醇處理之影響………………… 69
(一) 回收率及平均粒徑……………………………………… 69
(二) 顆粒結構及偏光十字性之觀察………………………… 69
(三) 分子特性………………………………………………… 73
(四) 糊化熱性質……………………………………………… 73
六、澱粉、醇液種類或超音波作用對澱粉分子特性及理化性質影響之差異………...……………………………………………… 79
結論……………………………………………………………… 87
參考文獻………………………………………………………… 89
答客問……………………………………………………………100
高正哲。 1991。 兩性非水介質中溶質酸鹼反應性質之電導法研究。 淡江大學化學研究所碩士論文。
張永和。 1984。 冬瓜茶揮發性成分之區分與鑑定及其加工條件之探討。 台灣大學食品科技研究所碩士論文。
陳佳琦。 2003。 品種與環境對aroid澱粉理化性質之影響。 靜宜大學食品營養學系碩士論文。
陳季洲,盧訓,呂政義。 1998。 球磨處理對糯性及非糯性米澱粉組織型態之變化。 食品科學 25(5): 657-665。
鄭振東。 1999。 超音波工程。 全華科技圖書股份有限公司。 台北市。
賴耿陽譯。 1982。 超音波工學理論及實務。 復漢出版社。 台南市。
AACC. 2000. Approved Methods of the American Association of Cereal Chemists. 10th ed. American Association of Cereal Chemists Inc., St. Paul, MN.
Abdelrahim KA, Ramaswamy HS, van de Voort FR. 1995. Rheological properties of starch solutions under aseptic processing temperatures. Food Res Int 28(5): 473-80.
Atichokudomchai N, Shobsngob S, Chinachoti P, Varavinit S. 2001. A study of some physicochemical properties of high-crystalline tapioca starch. Starch 53(11): 577-81.
Atichokudomchai N, Shobsngob S, Varavinit S. 2000. Morphological properties of acid-modified tapioca starch. Starch 52(8-9): 283-9.
Atichokudomchai N, Varavinit S, Chinachoti P. 2002. Gelatinization transitions of acid-modified tapioca starches by differential scanning calorimetry. Starch 54(7): 296-302.
Baczkowicz M, Tomasik P. 1989. Solvent effect on starch matrix. Part I: non-extrathermodynamic considerations. Starch 41(12):449-52.
BeMiller JN. 1964. Iodimetric determination of amylose in Methods in Carbohydrate Chemistry Vol. IV, Whistler RL, Smith RJ, BeMiller JN, Wolfrom ML (Eds.). Academic Press, New York, NY. pp. 165-8.
Bertoft E. 2004. Lintnerization of two amylose-free starches of A- and B-crystalline types, respectively. Starch 56(5): 167-80.
Biliaderis CG, Grant DR, Vose JR. 1981. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem 58(6): 502-7.
Chang AC, Chen FC. 2002. The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chem 79(4): 501-6.
Chang YH, Lin JH, Lii CY. 2004. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohydr Polym 57(1): 89-96.
Chen RH, Chang JR, Shyur JS. 1997. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr Res 299(4): 287-94.
Chien YW. 1984. Solubilization of metronidazole by water-miscible multi-cosolvents and water-soluble vitamins. J Parent Sci Technol 38(1): 32-6.
Chun J, Lim S, Takeda Y, Shoki M. 1997. Properties of high-crystalline rice amylodextrins prepared in acid-alcohol media as fat replacers. Cereal Foods World 42(10): 813-19.
Chung KM, Moon TW, Kim H, Chun JK. 2002. Physicochemical properties of sonicated mung bean, potato, and rice starches. Cereal Chem 79(5): 631-3.
Cooke D, Gidley MJ. 1992. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr Res 227:103-12.
Czechowska-Biskup R, Rokita B, Lotfy S, Ulanski P, Rosiak JM. 2005. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr Polym 60 (2): 175-84.
Day RA, Underwood AL. 1980. Acid-base equilibria in Quantitative Analysis, 4th ed, Day RA, Underwood AL (Eds.). Prentice Hall International, London, UK. pp. 128-65.
Degrois M, Gallant D, Baldo P, Guilbot A. 1974. The effects of ultrasound on starch grains. Ultrasonics 12(3): 121-31.
DeMan JM. 1990. Carbohydrates in Principles of Food Chemistry, 2nd ed, DeMan JM (Ed.). Van Nostrand Reinhold, New York, NY. pp. 143-82.
Dumanovic D, Kosanovic D, Mrdakovic D. 1992. Solubilization of ipronidazole by co-solvents. Pharmazie 47(8): 603-7.
Fox JD, Robyt JF. 1992. Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and the formation of new kinds of limit dextrins. Carbohydr Res 227(1): 163-70.
Franco CML, Cabral RAF, Tavares DQ. 2002. Structural and physicochemical characteristics of lintnerized native and sour cassava starches. Starch 54(10): 469-75.
French D, Whistler RL, BeMiller JN, Paschall EF. 1984. Organization of Starch Granules. Academic Press, Orlando, FL. pp. 611.
Gallant D, Degrois M, Sterling C, Guilbot A. 1972. Microscopic effects of ultrasound on the structure of potato starch. Starch 24(4): 116-23.
Grard C, Colonna P, Bulon A, Planchot V. 2002. Order in maize mutant starches revealed by mild acid hydrolysis. Carbohydr Polym 48(2): 131-41.
Gomes AMM, Mendes Da Silva CE, Ricardo NMPS. 2005. Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydr Polym 60(1): 1-6.
Guaita M, Chiantore O, Luda MP. 1990. Monte Carlo simulations of polymer degradations. 1. Degradations without volatilization. Macromolecules 23(7): 2087-92.
Hagiwara S, Nishiyama K, Fujino H. 1984. Effect of ultrasonic irradiation on the structure of potato starch granules. J Jpn Soc Starch Sci 31(3): 127-33.
Hizukuri S. 1996. Starch: analytical aspects in Carbohydrate in Food, Eliasson AC (Ed.). Mercel Dekker, New York, NY. pp. 347-429.
Hoover R, Vasanthan T. 1994. The effect of heat-moisture treatment on the structure and physicochemical properties of cereal, legume and tuber starches. Carbohydr Res 252(1): 33-53.
Hoover R. 2000. Acid-treated starches. Food Rev Int 16(3): 369-92.
Inouchi N, Glover DV, Fuwa H. 1987. Properties of residual maize starches following acid hydrolysis. Starch 39(8): 284-8.
Isono Y, Kumagai T, Watanabe T. 1994. Ultrasonic degradation of waxy rice starch. Biosci Biotech Biochem 58(10): 1799-802.
Jacobs H, Eerlingen RC, Rouseu N, Colonna P, Delcour JA. 1998. Acid hydrolysis of native and annealed wheat, potato and pea starches-DSC melting features and chain length distributions of lintnerized starches. Carbohydr Res 308(3-4): 359-71.
Jane J, Shen L, Wang L, Maningat CC. 1992. Preparation and properties of small-particle corn starch. Cereal Chem. 1992. 69(3): 280-3.
Jane J, Wong K, Mcpherson AE. 1997. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res 300(3): 219-27.
Jayakody L, Hoover R. 2002. The effect of lintnerization on cereal starch granules. Food Res Int 35(7): 665-80.
Jenkins PJ, Donald AM. 1997. The effect of acid hydrolysis on native starch granule structure. Starch 49(7-8): 262-7.
Kainuma K, French D. 1971. Nageli amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers 10: 1673-80.
Kanwal F, Liggat JJ, Pethrick RA. 2000. Ultrasonic degradation of polystyrene solutions. Polym Degradation Stab 68(3): 445-9.
Kardos N, Luche JL. 2001. Sonochemistry of carbohydrate compounds. Carbohydr Res 332(2): 115-31.
King EJ. 1978. Water in Qualitative Analysis and Electrolytic Solutions, 4th ed, King EJ (Ed.). Harcourt Brace, New York, NY. pp. 1-18.
Lai MF, Kuo MI, Li CF, Lii CY. 1996. Ultrasonication and heat effects on the chemical and gelling properties of red algal polysaccharides. Food Sci (Chinese) 23(5): 717-29.
Lauro M, Ring SG, Bull VJ, Poutanen K. 1997. Gelation of waxy barley starch hydrolysates. J Cereal Sci 26(3): 347-54.
Lii CY, Chen CH, Yeh AI, Lai VMF. 1999. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound. Food Hydrocoll 13(6): 477-81.
Lin JH, Lee SY, Chang YH. 2003. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydr Polym 53(4): 475-82.
Lin JH, Lii CY, Chang YH. 2005. Change of granular and molecular structures of waxy maize and potato starches after treated in alcohols with or without hydrochloric acid. Carbohydr Polym 59(4): 507-15.
Lorimer JP, Mason TJ, Cuthbert TC, Brookfield EA. 1995. Effect of ultrasound on the degradation of aqueous native dextran. Ultrason Sonochem 2(1): 55-7.
Luche JL. 1997. A few questions on the sonochemistry of solutions. Ultrason Sonochem 4(2): 211-5.
Ma WP, Robyt JF. 1987. Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohydr Res 166(2): 283-97.
Machov E, Kvapilov K, Kogan G, Šandula J. 1999. Effect of ultrasonic treatment on the molecular weight of carboxymethylated chitin-glucan complex from Aspergillus niger. Ultrason Sonochem 5(4): 169-72.
Maningat CC, Juliano BO. 1979. Properties of lintnerized starch granules from rices differing in amylose content and gelatinization temperature. Starch 31(1): 5-10.
Mark G, Tauber A, Laupert R, Schuchmann HP, Schulz D, Mues A, von Sonntag C. 1998. OH-radical formation by ultrasound in aqueous solution-Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5(2): 41-52.
Mason TJ, Lorimer JP. 1988. Ultrasonics in Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Mason TJ (Ed.). Ellis Horwood, London, UK. pp. 99-138.
Mason TJ, Paniwnyk L, Lorimer JP. 1996. The uses of ultrasound in food technology. Ultrason Sonochem 3(3): 253-60.
McClements DJ, Povery MJW. 1992. Ultrasonic analysis of edible fats and oils. Ultrasonics 30(6): 383-8.
McClements DJ. 1997. Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit Rev Food Sci Nutr 37(1): 1-46.
Miles CA, Shore D, Langley KR. 1990. Attenuation of ultrasound in milks and creams. Ultrasonics 28(6): 394-400.
Montgomery DC. 2001. The 2k factorial design in Design and Analysis of Experiments, 5th ed, Montgomery DC (Ed.). John Wiley and Sons Inc, New York, NY. pp. 218-86.
Morrison WR, Laignelet B. 1983. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1(1): 9-20.
Morrison WR, Tester RF, Gidley MJ, Karkalas J. 1993a. Resistance to acid hydrolysis of lipid complexed amylose and lipid-free amylose in lintnerized waxy and non-waxy barley starch. Carbohydr Res 245(2): 289-302.
Morrison WR, Tester RF, Snape CE, Law R, Gidley MJ. 1993b. Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and tree amylose in waxy and normal barley starches. Cereal Chem 70(4): 385-91.
Mostafa MAK. 1958. A mechanism of degradation of long chain molecules by ultrasonic waves. J Polym Sci 33(126): 323-35.
Mussulman WC, Wagoner JA. 1968. Electron microscopy of unmodified and acid-modified corn starches. Cereal Chem 45(2): 162-71.
Nakagawa S. 2003. Reactivity of solvent alcohol on degradation of CFC113. Radiat Phys Chem 66(1): 39-42.
Ndife MK, Şumnu G, Bayindirli L. 1998. Dielectric properties of six different species of starch at 2450 MHz. Food Res Int 31(1): 43-52.
Panchev IN, Kirtchev NA, Kratchanov CG. 1994. On the production of low esterified pectins by acid maceration of pectic raw materials with ultrasound treatment. Food Hydrocoll 8(1): 9-17.
Park H, Chi YM. 2001. The enhancement of electrostriction caused by lowering the solvent dielectric constant leads to the decrease of activation energy in trypsin catalysis. Biochimica et Biophysica Acta 1568(1): 53-9.
Polaczek E, Starzyk F, Tomasik P. 1999. Starch-alcohol complex. Carbohydr Polym 39(1): 37-42.
Portenlnger G, Heusinger H. 1997. The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrason Sonochem 4(2): 127-30.
Prakongpan S, Nagai T. 1984. Solubility of acetaminophen in cosolvents. Chem Pharm Bull 32(1): 340-3.
Price GJ, Daw MR, Newcombe NJ, Smith PF. 1990. Polymerization and copolymerization using high intensity ultrasound. British Polymer J 23(1-2): 63-6.
Radhika Reddy K, Ali SZ, Bhattacharya KR. 1993. The fine structure of rice-starch amylopectin and its relation to the texture of cooked rice. Carbohydr Polym 22(4): 267-75.
Robin JP, Mercier C, Charbonniere R, Guilbot A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51(3): 389-406.
Robyt JF, Choe JY, Fox JD, Hahn RS, Fuchs EB. 1996a. Acid modification of starch granules in alcohols: reactions in mixtures of two alcohols combined in different ratios. Carbohydr Res 283(1): 141-50.
Robyt JF, Choe JY, Hahn RS, Fuchs EB. 1996b. Acid modification of starch granules in alcohols: effects of temperature, acid concentration, and starch concentration. Carbohydr Res 281(2): 203-18.
Schoch TJ, Maywald EC. 1968. Preparation and properties of various legume starches. Cereal Chem 45(6): 564-573.
Schoch TJ. 1964. Swelling power and solubility of granular starches in Methods in Carbohydrate Chemistry Vol. IV,
Whistler RL, Smith RJ, BeMiller JN, Wolfrom ML (Eds.). Academic Press Inc, New York, NY. pp. 106-8.
Seguchi M, Higasa T, Mori T. 1994. Study of wheat starch structures by sonication treatment. Cereal Chem 71(6): 636-9.
Singh V, Ali SZ. 2000. Acid degradation of starch. The effect of acid and starch type. Carbohydr Polym 41(2): 191-5.
Skoog DA, West DM. 1977. Acid-base titrations in nonaqueous media in Fundamentals of Analytical Chemistry, 3rd ed.
Skoog DA, West DM (Eds.). Holt, Rinehart, and Winston Inc, New York, NY. pp. 256-68.
Small JC. 1919. A method for the preparation of soluble starch. J Am Chem Soc 41(1): 113-20.
Steel RGD, Torrie JH. 1980. Analysis of variance III: factorial experiments in Principles and procedures of statistics: a biometrical approach, 2nd ed. Steel RGD, Torrie JH (Eds.). McGraw-Hill, New York, NY. pp336-76.
Suslick KS, Hammerton DA, Cline REJ. 1986. Sonochemical hot spot. J Am Chem Soc 108(18): 5641-2.
Tester RF, Debon SJJ, Karkalas J. 1998. Annealing of wheat starch. J Cereal Sci 28(3): 259-72.
Tester RF, Debon SJJ, Sommerville MD. 2000. Annealing of maize starch. Carbohydr Polym 42(3): 287-99.
Tester RF, Morrison WR. 1990. Swelling and gelatinization of cereal starches. Cereal Chem 67(6): 558-63.
Thomas DJ, Atwell WA. 1999. Starch analysis methods in Starches. Thomas DJ, Atwell WA (Eds.). Eagan Press, St. Paul, MN. pp. 13-24.
Tijsen CJ, Kolk HJ, Stamhuis EJ, Beenackers AACM. 2001. An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydr Polym 45(3): 219-26.
van de Velde F, van Riel J, Tromp RH. 2002. Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J Sci Food Agric 82(13): 1528-36.
Virtanen T, Autio K, Suortti T, Poutanen K. 1993. Heat-induced changes in native and acid-modified oat starch pastes. J Cereal Sci 17: 137-45.
von Sonntag C, Mark G, Tauber A, Schuchmann HP. 1999. OH radical formation and dosimetry in the sonolysis of aqueous solutions. Adv Sonochem 5(1): 109-45.
Wang L, Wang YJ. 2001. Structures and physicochemical properties of acid-thinned corn, potato and rice starches. Starch 53(11): 570-6.
Wang L, Wang YJ. 2004. Application of high-intensity ultrasound and surfactants in rice starch isolation. Cereal Chem 81(1): 140-4.
Wang YJ, Truong VD, Wang L. 2003. Structures and rheological properties of corn starch as affected by acid hydrolysis. CarbohydrPolym 52(3): 327-33.
Weast RC, Astle MJ, Beyer WH. 1984. Handbook of Chemistry and Physics. 65th ed. CRC Press, Boca Raton, FL. pp. E-49.
Wurzburg OB. 1991. Converted starches in Modified Starches: Properties and Uses, 5th ed, Wurzburg OB (Ed.). CRC Press, Bridgewater, FL. pp. 17-40.
You S, Fiedorowicz M, Lim ST. 1999. Molecular characterization of wheat amylopectins by multiangle laser light scattering analysis. Cereal Chem 76(1): 116-21.
Zobel HF. 1988. Starch crystal transformation and their industrial importance. Starch 40(1): 1-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top